5,802
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Computational approaches for skin sensitization prediction

ORCID Icon, ORCID Icon & ORCID Icon
Pages 738-760 | Received 17 Apr 2018, Accepted 21 Sep 2018, Published online: 29 Nov 2018

References

  • Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A. 2011. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol. 85:367–485.
  • Alves VM, Capuzzi SJ, Braga RC, Borba JVB, Silva AC, Luechtefeld T, Hartung T, Andrade CH, Muratov EN, Tropsha A. 2018. A perspective and a new integrated computational strategy for skin sensitization assessment. ACS Sustainable Chem Eng. 6:2845–2859.
  • Alves VM, Capuzzi SJ, Muratov E, Braga RC, Thornton T, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. 2016. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization. Green Chem. 18:6501–6515.
  • Alves VM, Golbraikh A, Capuzzi SJ, Liu K, Lam WI, Korn DR, Pozefsky D, Andrade CH, Muratov EN, Tropsha A. 2018. Multi-Descriptor Read Across (MuDRA): a simple and transparent approach for developing accurate quantitative structure-activity relationship models. J Chem Inf Model. 58:1214–1223.
  • Alves V, Muratov E, Capuzzi S, Politi R, Low Y, Braga R, Zakharov AV, Sedykh A, Mokshyna E, Farag S, et al. 2016. Alarms about structural alerts. Green Chem. 18:4348–4360.
  • Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. 2015a. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization. Toxicol Appl Pharmacol. 284:273–280.
  • Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. 2015b. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol Appl Pharmacol. 284:262–272.
  • Anderson SE, Siegel PD, Meade BJ. 2011. The LLNA: a brief review of recent advances and limitations. J Allergy. 2011:424203.
  • Api AM, Parakhia R, O’Brien D, Basketter DA. 2017. Fragrances categorized according to relative human skin sensitization potency. Dermatitis. 28:299–307.
  • Aptula AO, Roberts DW. 2006. Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol. 19:1097–1105.
  • Asturiol D, Casati S, Worth A. 2016. Consensus of classification trees for skin sensitisation hazard prediction. Toxicol In Vitro. 36:197–209.
  • ATSDR. 2018. Substance priority list. [accessed 2018 Aug 14]. https://www.atsdr.cdc.gov/SPL/.
  • Barratt MD, Basketter DA, Chamberlain M, Payne MP, Admans GD, Langowski JJ. 1994. Development of an expert system rulebase for identifying contact allergens. Toxicol In Vitro. 8:837–839.
  • Basketter DA, Alépée N, Ashikaga T, Barroso J, Gilmour N, Goebel C, Hibatallah J, Hoffmann S, Kern P, Martinozzi-Teissier S, et al. 2014. Categorization of chemicals according to their relative human skin sensitizing potency. Dermatitis. 25:11–21.
  • Basketter D, Clewell H, Kimber I, Rossi A, Blaauboer B, Burrier R, Daneshian M, Eskes C, Goldberg A, Hasiwa N, et al. 2012. A roadmap for the development of alternative (non-animal) methods for skin sensitization testing. In: A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX. 29:3–32.
  • Benfenati E, Manganaro A, Gini G. 2013. VEGA-QSAR: AI inside a platform for predictive toxicology. In: Baldoni M, Chesani F, Mello P, Montali M, editors. 2013. Proceedings of the workshop "Popularize Artificial Intelligence 2013"; December 5 2013; Turin, Italy. CEUR Workshop Proceedings Vol 1107.
  • Benigni R, Bossa C, Tcheremenskaia O. 2016. A data-based exploration of the adverse outcome pathway for skin sensitization points to the necessary requirements for its prediction with alternative methods. Regul Toxicol Pharmacol. 78:45–52.
  • Bergers LIJC, Reijnders CMA, van den Broek LJ, Spiekstra SW, de Gruijl TD, Weijers EM, Gibbs S. 2016. Immune-competent human skin disease models. Drug Discov Today. 21:1479–1488.
  • BIOVIA. QSAR, ADMET and predictive toxicology. [accessed 2018 Aug 22]. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html.
  • BIOVIA. 2017a. BIOVIA toxicity prediction model – skin sensitiser vs non sensitiser. (Q)SAR Model Reporting Format Database. [accessed 2018 Jan 16]. https://qsardb.jrc.ec.europa.eu/qmrf/protocol/Q17-46-0042/document?media=application%2Fpdf.
  • BIOVIA. 2017b. BIOVIA toxicity prediction model – weak vs strong sensitiser. (Q)SAR Model Reporting Format Database. [accessed 2018 Jan 16]. https://qsardb.jrc.ec.europa.eu/qmrf/protocol/Q17-46-0043/document?media=application%2Fpdf.
  • Braga RC, Alves VM, Muratov EN, Strickland J, Kleinstreuer N, Trospsha A, Andrade CH. 2017. Pred-Skin: a fast and reliable web application to assess skin sensitization effect of chemicals. J Chem Inf Model. 57:1013–1017.
  • CAESAR. CAESAR project. [accessed 2018 Feb 6]. http://www.caesar-project.eu.
  • CAESAR. Skin sensitization model. [accessed 2018 Jan 25]. http://www.caesar-project.eu/index.php?page=results&section=endpoint&ne=2.
  • Canipa SJ, Chilton ML, Hemingway R, Macmillan DS, Myden A, Plante JP, Tennant RE, Vessey JD, Steger-Hartmann T, Gould J, et al. 2017. A quantitative in silico model for predicting skin sensitization using a nearest neighbours approach within expert-derived structure-activity alert spaces. J Appl Toxicol. 37:985–995.
  • Casati S, Aschberger K, Barroso J, Casey W, Delgado I, Kim TS, Kleinstreuer N, Kojima H, Lee JK, Lowit A, et al. 2018. Standardisation of defined approaches for skin sensitisation testing to support regulatory use and international adoption: position of the International Cooperation on Alternative Test Methods. Arch Toxicol. 92:611–617.
  • Chakravarti SK, Saiakhov RD, Klopman G. 2012. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts. J Chem Inf Model. 52:2609–2618.
  • Chaudhry Q, Piclin N, Cotterill J, Pintore M, Price NR, Chrétien JR, Roncaglioni A. 2010. Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J. 4(Suppl 1):S5.
  • Chembench. Accelerating chemical genomics research. [accessed 2018 July 25]. https://chembench.mml.unc.edu/mudra/.
  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, et al. 2014. QSAR modeling: where have you been? Where are you going to? J Med Chem. 57:4977–5010.
  • Chilton ML, Macmillan DS, Steger-Hartmann T, Hillegass J, Bellion P, Vuorinen A, Etter S, Smith BPC, White A, Sterchele P, et al. 2018. Making reliable negative predictions of human skin sensitisation using an in silico fragmentation approach. Regul Toxicol Pharmacol. 95:227–235.
  • Chipinda I, Hettick JM, Siegel PD. 2011. Haptenation: chemical reactivity and protein binding. J Allergy. 2011:839682.
  • CORAL. Free software for QSAR and nanoQSAR. [accessed 2018 Aug 13]. www.insilico.eu/coral.
  • Cottrez F, Boitel E, Auriault C, Aeby P, Groux H. 2015. Genes specifically modulated in sensitized skins allow the detection of sensitizers in a reconstructed human skin model. Development of the SENS-IS assay. Toxicol In Vitro. 29:787–802.
  • Cottrez F, Boitel E, Ourlin JC, Peiffer JL, Fabre I, Henaoui IS, Mari B, Vallauri A, Paquet A, Barbry P, et al. 2016. SENS-IS, a 3D reconstituted epidermis based model for quantifying chemical sensitization potency: reproducibility and predictivity results from an inter-laboratory study. Toxicol In Vitro. 32:248–260.
  • Dearden JC, Hewitt M, Roberts DW, Enoch SJ, Rowe PH, Przybylak KR, Vaughan-Williams GD, Smith ML, Pillai GG, Katritzky AR. 2015. Mechanism-Based QSAR Modeling of Skin Sensitization. Chem Res Toxicol. 28:1975–1986.
  • Dimitrov SD, Low LK, Patlewicz GY, Kern PS, Dimitrova GD, Comber MHI, Phillips RD, Niemela J, Bailey PT, Mekenyan OG. 2005. Skin sensitization: modeling based on skin metabolism simulation and formation of protein conjugates. Int J Toxicol. 24:189–204.
  • Dumont C, Barroso J, Matys I, Worth A, Casati S. 2016. Analysis of the Local Lymph Node Assay (LLNA) variability for assessing the prediction of skin sensitisation potential and potency of chemicals with non-animal approaches. Toxicol In Vitro. 34:220–228.
  • ECHA. Homepage. [accessed 2018 July 17]. https://echa.europa.eu/en.
  • ECHA. 2017. The use of alternatives to testing on animals for the REACH Regulation. [accessed 2018 Aug 27]. https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2017_en.pdf.
  • Ellison CM, Madden JC, Judson P, Cronin MTD. 2010. Using in silico tools in a weight of evidence approach to aid toxicological assessment. Mol Inform. 29:97–110.
  • Enoch SJ, Cronin MTD, Schultz TW, Madden JC. 2008. Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition. Chem Res Toxicol. 21:513–520.
  • Enoch SJ, Ellison CM, Schultz TW, Cronin MTD. 2011. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity. Crit Rev Toxicol. 41:783–802.
  • Enoch SJ, Madden JC, Cronin MTD. 2008. Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res. 19:555–578.
  • Enoch SJ, Roberts DW. 2013. Predicting skin sensitization potency for Michael acceptors in the LLNA using quantum mechanics calculations. Chem Res Toxicol. 26:767–774.
  • Enslein K, Gombar VK, Blake BW, Maibach HI, Hostynek JJ, Sigman CC, Bagheri D. 1997. A quantitative structure-toxicity relationships model for the dermal sensitization guinea pig maximization assay. Food Chem Toxicol. 35:1091–1098.
  • EURL ECVAM. KeratinoSens assay for the testing of skin sensitizers [accessed 2018 Aug 29]. https://tsar.jrc.ec.europa.eu/test-method/tm2010-03.
  • EUR-Lex. 2009. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. [accessed 2018 Jul 4]. https://eur-lex.europa.eu/eli/reg/2009/1223/oj.
  • EURL ECVAM. LuSens assay. [accessed 2018 Mar 28]. https://tsar.jrc.ec.europa.eu/test-method/tm2011-10.
  • Ezendam J, Braakhuis HM, Vandebriel RJ. 2016. State of the art in non-animal approaches for skin sensitization testing: from individual test methods towards testing strategies. Arch Toxicol. 90:2861–2883.
  • Fitzpatrick JM, Patlewicz G. 2017. Application of IATA – a case study in evaluating the global and local performance of a Bayesian network model for skin sensitization. SAR QSAR Environ Res. 28:297–310.
  • Fitzpatrick JM, Roberts DW, Patlewicz G. 2017a. What determines skin sensitization potency: myths, maybes and realities. The 500 molecular weight cut-off: an updated analysis. J Appl Toxicol. 37:105–116.
  • Fitzpatrick JM, Roberts DW, Patlewicz G. 2017b. Is skin penetration a determining factor in skin sensitization potential and potency? Refuting the notion of a LogKow threshold for skin sensitization. J Appl Toxicol. 37:117–127.
  • Fitzpatrick JM, Roberts DW, Patlewicz G. 2018. An evaluation of selected (Q)SARs/expert systems for predicting skin sensitisation potential. SAR QSAR Environ Res. 29:439–468.
  • Garner LA. 2004. Contact dermatitis to metals. Dermatol Ther. 17:321–327.
  • Gerberick GF, Ryan CA, Kern PS, Schlatter H, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA. 2005. Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis. 16:157–202.
  • Gerner I, Barratt MD, Zinke S, Schlegel K, Schlede E. 2004. Development and prevalidation of a list of structure-activity relationship rules to be used in expert systems for prediction of the skin-sensitising properties of chemicals. Altern Lab Anim. 32:487–509.
  • Gleeson MP, Modi S, Bender A, Robinson RLM, Kirchmair J, Promkatkaew M, Hannongbua S, Glen RC. 2012. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des. 18:1266–1291.
  • Goebel C, Aeby P, Ade N, Alépée N, Aptula A, Araki D, Dufour E, Gilmour N, Hibatallah J, Keller D, et al. 2012. Guiding principles for the implementation of non-animal safety assessment approaches for cosmetics: skin sensitisation. Regul Toxicol Pharmacol. 63:40–52.
  • Goebel C, Diepgen TL, Blömeke B, Gaspari AA, Schnuch A, Fuchs A, Schlotmann K, Krasteva M, Kimber I. 2018. Skin sensitization quantitative risk assessment for occupational exposure of hairdressers to hair dye ingredients. Regul Toxicol Pharmacol. 95:124–132.
  • Goebel C, Kosemund-Meynen K, Gargano EM, Politano V, von Bölcshazy G, Zupko K, Jaiswal N, Zhang J, Martin S, Neumann D, Rothe H. 2017. Non-animal skin sensitization safety assessments for cosmetic ingredients – What is possible today? Curr Opin Toxicol. 5:46–54.
  • Graham C, Gealy R, Macina OT, Karol MH, Rosenkranz HS. 1996. QSAR for allergic contact dermatitis. Quant Struct-Act Relat. 15:224–229.
  • Hartung T. 2013. Look back in anger – what clinical studies tell us about preclinical work. ALTEX. 30:275–291.
  • Hartung T. 2017. Opinion versus evidence for the need to move away from animal testing. ALTEX. 34:193–200.
  • Helgee EA, Carlsson L, Boyer S, Norinder U. 2010. Evaluation of quantitative structure-activity relationship modeling strategies: local and global models. J Chem Inf Model. 50:677–689.
  • Hennen J, Aeby P, Goebel C, Schettgen T, Oberli A, Kalmes M, Blömeke B. 2011. Cross talk between keratinocytes and dendritic cells: impact on the prediction of sensitization. Toxicol Sci. 123:501–510.
  • Heratizadeh A, Werfel T, Schubert S, Geier J. IVDK. 2018. Contact sensitization in dental technicians with occupational contact dermatitis. Data of the Information Network of Departments of Dermatology (IVDK) 2001-2015. Contact Dermatitis. 78:266–273.
  • Hirota M, Ashikaga T, Kouzuki H. 2017. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSensTM and in silico structure alert parameter. J Appl Toxicol. 38:514–526.
  • Hoffmann S. 2015. LLNA variability: an essential ingredient for a comprehensive assessment of non-animal skin sensitization test methods and strategies. ALTEX. 32:379–383.
  • Hoffmann S, Kleinstreuer N, Alépée N, Allen D, Api AM, Ashikaga T, Clouet E, Cluzel M, Desprez B, Gellatly N, et al. 2018. Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Crit Rev Toxicol. 48:344–358.
  • ICCVAM. 2011. Test method evaluation report: usefulness and Limitations of the Murine Local Lymph Node Assay for potency categorization of chemicals causing allergic contact dermatitis in humans. [accessed 2018 Apr 16]. https://ntp.niehs.nih.gov/iccvam/docs/immunotox_docs/llna-pot/tmer.pdf.
  • ICCVAM. 2013. NICEATM Murine Local Lymph Node Assay (LLNA) Database. [accessed 2017 Nov 24]. https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/immunotoxicity/nonanimal/index.html#NICEATM-Murine-Local-Lymph-Node-Assay-LLNA-Database.
  • Jaworska J. 2016. Integrated testing strategies for skin sensitization hazard and potency Assessment—State of the Art and Challenges. Cosmetics. 3:16.
  • Jaworska J, Dancik Y, Kern P, Gerberick F, Natsch A. 2013. Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice. J Appl Toxicol. 33:1353–1364.
  • Jaworska J, Harol A, Kern PS, Gerberick GF. 2011. Integrating non-animal test information into an adaptive testing strategy – skin sensitization proof of concept case. ALTEX. 28:211–225.
  • Jaworska JS, Natsch A, Ryan C, Strickland J, Ashikaga T, Miyazawa M. 2015. Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol. 89:2355–2383.
  • Johansson H, Gradin R, Forreryd A, Agemark M, Zeller K, Johansson A, Larne O, van Vliet E, Borrebaeck C, Lindstedt M. 2017. Evaluation of the GARD assay in a blind Cosmetics Europe study. ALTEX. 34:515–523.
  • Johansson H, Albrekt AS, Borrebaeck CA, Lindstedt M. 2013. The GARD assay for assessment of chemical skin sensitizers. Toxicol In Vitro. 27:1163–1169.
  • Johansson H, Gradin R. 2017. Skin sensitization: challenging the conventional thinking – a case against 2 out of 3 as integrated testing strategy. Toxicol Sci. 159:3–5.
  • Johansson H, Lindstedt M. 2014. Prediction of skin sensitizers using alternative methods to animal experimentation. Basic Clin Pharmacol Toxicol. 115:110–117.
  • Johansson H, Lindstedt M, Albrekt A-S, Borrebaeck CAK. 2011. A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genomics 12:399.
  • Johansson H, Rydnert F, Kühnl J, Schepky A, Borrebaeck CAK, Lindstedt M. 2014. Genomic allergen rapid detection in-house validation–a proof of concept. Toxicol Sci. 139:362–370.
  • Karlberg AT, Bergström MA, Börje A, Luthman K, Nilsson JLG. 2008. Allergic contact dermatitis-formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol. 21:53–69.
  • Kazius J, McGuire R, Bursi R. 2005. Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem. 48:312–320.
  • Kern PS, Gerberick GF, Ryan CA, Kimber I, Aptula A, Basketter DA. 2010. Local lymph node data for the evaluation of skin sensitization alternatives: a second compilation. Dermatitis. 21:8–32.
  • Kimber I, Basketter DA, Gerberick GF, Ryan CA, Dearman RJ. 2011. Chemical allergy: translating biology into hazard characterization. Toxicol Sci. 120Suppl 1:S238–S268.
  • Kimber I, Frank Gerberick G, Basketter DA. 2017. Quantitative risk assessment for skin sensitization: success or failure? Regul Toxicol Pharmacol. 83:104–108.
  • Kleinstreuer NC, Hoffmann S, Alépée N, Allen D, Ashikaga T, Casey W, Clouet E, Cluzel M, Desprez B, Gellatly N, et al. 2018. Non-animal methods to predict skin sensitization (II): an assessment of defined approaches *. Crit Rev Toxicol. 48:359–374.
  • Klopman G. 1992. MULTICASE 1. A hierarchical computer automated structure evaluation program. Quant Struct-Act Relat. 11:176–184.
  • Kostal J, Voutchkova-Kostal A. 2016. CADRE-SS, an in silico tool for predicting skin sensitization potential based on modeling of molecular interactions. Chem Res Toxicol. 29:58–64.
  • LabMol. Pred-Skin 2.0. [accessed 2018 Aug 22]. http://labmol.com.br/predskin/.
  • Langton K, Patlewicz GY, Long A, Marchant CA, Basketter DA. 2006. Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows. Contact Dermatitis. 55:342–347.
  • Leontaridou M, Gabbert S, Van Ierland EC, Worth AP, Landsiedel R. 2016. Evaluation of non-animal methods for assessing skin sensitisation hazard: a Bayesian Value-of-Information analysis. Altern Lab Anim. 44:255–269.
  • Leontaridou M, Urbisch D, Kolle SN, Ott K, Mulliner DS, Gabbert S, Landsiedel R. 2017. The borderline range of toxicological methods: quantification and implications for evaluating precision. ALTEX. 34:525–538.
  • Lhasa Limited. Derek Nexus. [accessed 2018 Jan 26]. https://www.lhasalimited.org/products/derek-nexus.htm.
  • Luechtefeld T, Maertens A, McKim JM, Hartung T, Kleensang A, Sá-Rocha V. 2015. Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships. J Appl Toxicol. 35:1361–1371.
  • Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T. 2016. Analysis of publically available skin sensitization data from REACH registrations 2008-2014. ALTEX. 33:135–148.
  • Luechtefeld T, Marsh D, Rowlands C, Hartung T. 2018. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci. 165:198–212.
  • Luechtefeld T, Rowlands C, Hartung T. 2018. Big-data and machine learning to revamp computational toxicology and its use in risk assessment. Toxicol Res. 7:732–744.
  • Lu J, Zheng M, Wang Y, Shen Q, Luo X, Jiang H, Chen K. 2011. Fragment-based prediction of skin sensitization using recursive partitioning. J Comput Aided Mol Des. 25:885–893.
  • Lushniak BD. 2004. Occupational contact dermatitis. Dermatol Ther. 17:272–277.
  • Macmillan DS, Canipa SJ, Chilton ML, Williams RV, Barber CG. 2016. Predicting skin sensitisation using a decision tree integrated testing strategy with an in silico model and in chemico/in vitro assays. Regul Toxicol Pharmacol. 76:30–38.
  • Martin SF, Esser PR, Weber FC, Jakob T, Freudenberg MA, Schmidt M, Goebeler M. 2011. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy. 66:1152–1163.
  • Mehling A, Eriksson T, Eltze T, Kolle S, Ramirez T, Teubner W, van Ravenzwaay B, Landsiedel R. 2012. Non-animal test methods for predicting skin sensitization potentials. Arch Toxicol. 86:1273–1295.
  • Mekenyan O, Dimitrov S, Pavlov T, Dimitrova G, Todorov M, Petkov P, Kotov S. 2012. Simulation of chemical metabolism for fate and hazard assessment. V. Mammalian hazard assessment. SAR QSAR Environ Res. 23:553–606.
  • Mekenyan O, Dimitrov S, Pavlov T, Veith G. 2004. A systematic approach to simulating metabolism in computational toxicology. I. The TIMES heuristic modelling framework. Curr Pharm Des. 10:1273–1293.
  • MultiCASE. CASE Ultra: QSAR expert system. [accessed 2018 Aug 22]. http://www.multicase.com/case-ultra.
  • Muratov EN, Artemenko AG, Varlamova EV, Polischuk PG, Lozitsky VP, Fedchuk AS, Lozitska RL, Gridina TL, Koroleva LS, Sil'nikov VN, et al. 2010. Per aspera ad astra: application of Simplex QSAR approach in antiviral research. Future Med Chem. 2:1205–1226.
  • Naive Bayes Skin Sensitization Model v. 1.1. [accessed 2018 Aug 16]. https://figshare.com/articles/Naive_Bayes_Skin_Sensitization_Model/5758644.
  • Natsch A, Emter R, Gfeller H, Haupt T, Ellis G. 2015. Predicting skin sensitizer potency based on in vitro data from KeratinoSens and kinetic peptide binding: global versus domain-based assessment. Toxicol Sci. 143:319–332.
  • Natsch A, Emter R, Haupt T, Ellis G. 2018. Deriving a no expected sensitization induction level for fragrance ingredients without animal testing: an integrated approach applied to specific case studies. Toxicol Sci. 165:170–185.
  • Natsch A, Ryan CA, Foertsch L, Emter R, Jaworska J, Gerberick F, Kern P. 2013. A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J Appl Toxicol. 33:1337–1352.
  • Nendza M, Gabbert S, Kühne R, Lombardo A, Roncaglioni A, Benfenati E, Benigni R, Bossa C, Strempel S, Scheringer M, et al. 2013. A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH. Regul Toxicol Pharmacol. 66:301–314.
  • OASIS-LMC. TIMES model for skin sensitization prediction. [accessed 2018 Jan 30]. http://oasis-lmc.org/products/models/human-health-endpoints/skin-sensitization.aspx.
  • OASIS-LMC. TIMES-SS Software. [accessed 2018 Jan 30]. http://oasis-lmc.org/products/software/times.aspx.
  • OCHEM. Online chemical modeling environment. [accessed 2018 Mar 28]. https://ochem.eu/home/show.do.
  • OECD. eChemPortal. [accessed 2018 July 17]. https://www.echemportal.org/.
  • OECD. The OECD QSAR Toolbox. [accessed 2018 July 4]. http://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm.
  • OECD. 2012. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. [accessed 2018 Apr 17]. http://www.oecd.org/env/the-adverse-outcome-pathway-for-skin-sensitisation-initiated-by-covalent-binding-to-proteins-9789264221444-en.htm.
  • OECD. 2014a. OECD series on testing and assessment. Guidance on grouping of chemicals, second edition. [accessed 2018 Apr 17]. https://www.oecd-ilibrary.org/environment/guidance-on-grouping-of-chemicals-second-edition_9789264274679-en.
  • OECD. 2014b. OECD series on testing and assessment. Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. [accessed 2018 Apr 17]. http://www.oecd.org/env/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-9789264085442-en.htm.
  • OECD. 2015a. Test No. 442C: In chemico skin sensitisation. [accessed 2018 Apr 17] http://www.oecd.org/env/test-no-442c-in-chemico-skin-sensitisation-9789264229709-en.htm.
  • OECD. 2015b. Test No. 442D: In vitro skin sensitisation. [accessed 2018 Apr 17]. http://www.oecd.org/env/test-no-442d-in-vitro-skin-sensitisation-9789264229822-en.htm.
  • OECD. 2017a. Test No. 442E: In vitro skin sensitisation. [accessed 2018 Apr 17]. http://www.oecd.org/env/test-no-442e-in-vitro-skin-sensitisation-9789264264359-en.htm.
  • OECD. 2017b. Guidance document on the reporting of defined approaches and individual information sources to be used within integrated approaches to testing and assessment (IATA) for skin sensitisation. [accessed 2018 July 4]. https://www.oecd-ilibrary.org/docserver/9789264274822-en.pdf.
  • OECD. 2017c. Guidance document on the reporting of defined approaches to be used within integrated approaches to testing and assessment. [accessed 2018 July 4]. https://www.oecd-ilibrary.org/docserver/9789264274822-en.pdf.
  • Otsubo Y, Nishijo T, Miyazawa M, Saito K, Mizumachi H, Sakaguchi H. 2017. Binary test battery with KeratinoSens™ and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction . Regul Toxicol Pharmacol. 88:118–124.
  • Ouyang Q, Wang L, Mu Y, Xie X-Q. 2014. Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties. BMC Pharmacol Toxicol. 15:76.
  • Patlewicz G, Aptula AO, Roberts DW, Uriarte E. 2008. A minireview of available skin sensitization (Q)SARs/expert systems. QSAR Comb Sci. 27:60–76.
  • Patlewicz G, Ball N, Booth ED, Hulzebos E, Zvinavashe E, Hennes C. 2013. Use of category approaches, read-across and (Q)SAR: general considerations. Regul Toxicol Pharmacol. 67:1–12.
  • Patlewicz G, Casati S, Basketter DA, Asturiol D, Roberts DW, Lepoittevin JP, Worth AP, Aschberger K. 2016. Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization? Regul Toxicol Pharmacol. 82:147–155.
  • Patlewicz G, Dimitrov SD, Low LK, Kern PS, Dimitrova GD, Comber MIH, Aptula AO, Phillips RD, Niemelä J, Madsen C, et al. 2007. TIMES-SS – A promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Regul Toxicol Pharmacol. 48:225–239.
  • Patlewicz G, Helman G, Pradeep P, Shah I. 2017. Navigating through the minefield of read-across tools: a review of in silico tools for grouping. Comput Toxicol. 3:1–18.
  • Patlewicz G, Kuseva C, Kesova A, Popova I, Zhechev T, Pavlov T, Roberts DW, Mekenyan O. 2014. Towards AOP application-implementation of an integrated approach to testing and assessment (IATA) into a pipeline tool for skin sensitization. Regul Toxicol Pharmacol. 69:529–545.
  • Patlewicz G, Kuseva C, Mehmed A, Popova Y, Dimitrova G, Ellis G, Hunziker R, Kern P, Low L, Ringeissen S, et al. 2014. TIMES-SS-recent refinements resulting from an industrial skin sensitisation consortium. SAR QSAR Environ Res. 25:367–391.
  • Patlewicz G, Worth A. 2008. Review of Data Sources, QSARs and Integrated Testing Strategies for Skin Sensitisation. [accessed 2018 June 17]. https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/EUR_23225_EN.pdf.
  • Payne MP, Walsh PT. 1994. Structure-activity relationships for skin sensitization potential: development of structural alerts for use in knowledge-based toxicity prediction systems. J Chem Inf Comput Sci. 34:154–161.
  • Politano VT, Api AM. 2008. The Research Institute for Fragrance Materials’ human repeated insult patch test protocol. Regul Toxicol Pharmacol. 52:35–38.
  • Promkatkaew M, Gleeson D, Hannongbua S, Gleeson PM. 2014. Skin sensitization prediction using quantum chemical calculations: a theoretical model for the SNAr domain. Chem Res Toxicol. 27:51–60.
  • Raunio H. 2011. In silico toxicology - non-testing methods. Front Pharmacol. 2:33.
  • Reisinger K, Hoffmann S, Alépée N, Ashikaga T, Barroso J, Elcombe C, Gellatly N, Galbiati V, Gibbs S, Groux H, et al. 2015. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol In Vitro. 29:259–270.
  • Reuter H, Spieker J, Gerlach S, Engels U, Pape W, Kolbe L, Schmucker R, Wenck H, Diembeck W, Wittern K-P, et al. 2011. In vitro detection of contact allergens: development of an optimized protocol using human peripheral blood monocyte-derived dendritic cells. Toxicol In Vitro. 25:315–323.
  • Roberts DW. 2013. Allergic contact dermatitis: is the reactive chemistry of skin sensitizers the whole story? A response. Contact Dermatitis. 68:245–249.
  • Roberts DW, Aptula A, Api AM. 2017. Structure-potency relationships for epoxides in allergic contact dermatitis. Chem Res Toxicol. 30:524–531.
  • Roberts DW, Aptula AO. 2014. Electrophilic reactivity and skin sensitization potency of SNAr electrophiles. Chem Res Toxicol. 27:240–246.
  • Roberts DW, Aptula AO, Patlewicz G. 2007. Electrophilic chemistry related to skin sensitization. Reaction mechanistic applicability domain classification for a published data set of 106 chemicals tested in the mouse local lymph node assay. Chem Res Toxicol. 20:44–60.
  • Roberts DW, Aptula AO, Patlewicz GY. 2011. Chemistry-based risk assessment for skin sensitization: quantitative mechanistic modeling for the SNAr domain. Chem Res Toxicol. 24:1003–1011.
  • Roberts DW, Mekenyan OG, Dimitrov SD, Dimitrova GD. 2013. What determines skin sensitization potency-myths, maybes and realities. Part 1. The 500 molecular weight cut-off. Contact Dermatitis. 68:32–41.
  • Roberts DW, Natsch A. 2009. High throughput kinetic profiling approach for covalent binding to peptides: application to skin sensitization potency of Michael acceptor electrophiles. Chem Res Toxicol. 22:592–603.
  • Roberts DW, Patlewicz G. 2018. Non-animal assessment of skin sensitization hazard: Is an integrated testing strategy needed, and if so what should be integrated? J Appl Toxicol. 38:41–50.
  • Roberts DW, Patlewicz G, Dimitrov SD, Low LK, Aptula AO, Kern PS, Dimitrova GD, Comber MIH, Phillips RD, Niemelä J, et al. 2007. TIMES-SS – a mechanistic evaluation of an external validation study using reaction chemistry principles. Chem Res Toxicol. 20:1321–1330.
  • Roberts DW, Schultz TW, Api AM. 2017. Skin sensitization QMM for HRIPT NOEL data: aldehyde Schiff-base domain. Chem Res Toxicol. 30:1309–1316.
  • Roberts DW, Williams DL. 1982. The derivation of quantitative correlations between skin sensitisation and physio-chemical parameters for alkylating agents, and their application to experimental data for sultones. J Theor Biol. 99:807–825.
  • Rorije E, Aldenberg T, Buist H, Kroese D, Schüürmann G. 2013. The OSIRIS weight of evidence approach: ITS for skin sensitisation. Regul Toxicol Pharmacol. 67:146–156.
  • Rovida C, Alépée N, Api AM, Basketter DA, Bois FY, Caloni F, Corsini E, Daneshian M, Eskes C, Ezendam J, et al. 2015. Integrated testing strategies (ITS) for safety assessment. ALTEX. 32:25–40.
  • Russell WMS, Burch RL. 1959. The principles of humane experimental technique. Michigan: Universities Federation for Animal Welfare.
  • Saiakhov R, Chakravarti S, Klopman G. 2013. Effectiveness of CASE Ultra expert system in evaluating adverse effects of drugs. Mol Inform. 32:87–97.
  • Schmidt M, Raghavan B, Müller V, Vogl T, Fejer G, Tchaptchet S, Keck S, Kalis C, Nielsen PJ, Galanos C, et al. 2010. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 11:814–819.
  • Schultz TW, Amcoff P, Berggren E, Gautier F, Klaric M, Knight DJ, Mahony C, Schwarz M, White A, Cronin MT. 2015. A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol. 72:586–601.
  • SkinSensDB. [accessed 2018 Mar 29]. http://cwtung.kmu.edu.tw/skinsensdb/.
  • Steiling W. 2016. Safety evaluation of cosmetic ingredients regarding their skin sensitization potential. Cosmet Toiletries. 3:14.
  • Strickland J, Zang Q, Paris M, Lehmann DM, Allen D, Choksi N, Matheson J, Jacobs A, Casey W, Kleinstreuer N. 2017. Multivariate models for prediction of human skin sensitization hazard. J Appl Toxicol. 37:347–360.
  • Sushko I, Novotarskyi S, Körner R, Pandey AK, Rupp M, Teetz W, Brandmaier S, Abdelaziz A, Prokopenko VV, Tanchuk VY, et al. 2011. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comput Aided Mol Des. 25:533–554.
  • Sushko I, Salmina E, Potemkin VA, Poda G, Tetko IV. 2012. ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J Chem Inf Model. 52:2310–2316.
  • Talete S.r.l. Dragon. [accessed 2018 Apr 16]. http://www.talete.mi.it/products/dragon_description.htm.
  • Teubner W, Mehling A, Schuster PX, Guth K, Worth A, Burton J, van Ravenzwaay B, Landsiedel R. 2013. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance. Regul Toxicol Pharmacol. 67:468–485.
  • Thyssen JP, Giménez-Arnau E, Lepoittevin JP, Menné T, Boman A, Schnuch A. 2012. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part I. Contact Dermatitis. 66: 11–24.
  • Thyssen JP, Linneberg A, Menné T, Johansen JD. 2007. The epidemiology of contact allergy in the general population-prevalence and main findings. Contact Dermatitis. 57:287–299.
  • Todeschini R, Consonni V, Mannhold R. 2009. Molecular descriptors for chemoinformatics: Volume I: Alphabetical listing/Volume II: Appendices, references. Weinheim: Wiley-VCH.
  • Toropova AP, Toropov AA. 2017. Hybrid optimal descriptors as a tool to predict skin sensitization in accordance to OECD principles. Toxicol Lett. 275:57–66.
  • ToxFix. CADRE-SS skin sensitization model. [accessed 2018 Jan 30]. http://toxfix.com/skin-sensitization.php.
  • Toxtree. [accessed 2018 Apr 16]. http://toxtree.sourceforge.net/.
  • Tung CW, Wang CC, Wang SS. 2018. Mechanism-informed read-across assessment of skin sensitizers based on SkinSensDB. Regul Toxicol Pharmacol. 94:276–282.
  • UL. REACHAcrossTM – satisfy REACH regulations and ECHA submissions with automated read-across. [accessed 2018 July 7]. https://www.ulreachacross.com/index.html.
  • Urbisch D, Becker M, Honarvar N, Kolle SN, Mehling A, Teubner W, Wareing B, Landsiedel R. 2016. Assessment of pre- and pro-haptens using nonanimal test methods for skin sensitization. Chem Res Toxicol. 29:901–913.
  • Urbisch D, Honarvar N, Kolle SN, Mehling A, Ramirez T, Teubner W, Landsiedel R. 2016. Peptide reactivity associated with skin sensitization: the QSAR Toolbox and TIMES compared to the DPRA. Toxicol in Vitro. 34:194–203.
  • Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle S, Landsiedel R, Jaworska J, Kern PS, Gerberick F, et al. 2015. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol. 71:337–351.
  • U.S. EPA. 2018 Interim science policy: Use of alternative approaches for skin sensitization as a replacement for laboratory animal testing. [accessed 2018 Aug 30]. https://www.regulations.gov/document?D=EPA-HQ-OPP-2016-0093-0090.
  • van der Veen JW, Rorije E, Emter R, Natsch A, van Loveren H, Ezendam J. 2014. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol. 69:371–379.
  • VEGA HUB. VEGA. [accessed 2018 Mar 28]. https://www.vegahub.eu/portfolio-item/vega-qsar/.
  • Verheyen GR, Braeken E, Van Deun K, Van Miert S. 2017. Evaluation of in silico tools to predict the skin sensitization potential of chemicals. SAR QSAR Environ Res. 28:59–73.
  • Wang CC, Lin YC, Wang SS, Shih C, Lin YH, Tung CW. 2017. SkinSensDB: a curated database for skin sensitization assays. J Cheminform. 9:5.
  • Warne MA, Nicholson JK, Lindon JC, Guiney PD, Gartland KPR. 2009. A QSAR investigation of dermal and respiratory chemical sensitizers based on computational chemistry properties. SAR QSAR. Environ Res. 20:429–451.
  • Wijeyesakere SJ, Wilson DM, Settivari R, Auernhammer TR, Parks AK, Sue Marty M. 2018. Development of a profiler for facile chemical reactivity using the open-source Konstanz information miner. Appl In Vitro Toxicol. 4:202–213.
  • Williams RV, Amberg A, Brigo A, Coquin L, Giddings A, Glowienke S, Greene N, Jolly R, Kemper R, O'Leary-Steele C, et al. 2016. It's difficult, but important, to make negative predictions. Regul Toxicol Pharmacol. 76:79–86.
  • Winkler GC, Perino C, Araya SH, Bechter R, Kuster M, Lovsin Barle E. 2015. Classification of dermal sensitizers in pharmaceutical manufacturing. Regul Toxicol Pharmacol. 72:501–505.
  • Wondrousch D, Böhme A, Thaens D, Ost N, Schüürmann G. 2010. Local electrophilicity predicts the toxicity-relevant reactivity of Michael acceptors. J Phys Chem Lett. 1:1605–1610.
  • Yuan H, Huang J, Cao C. 2009. Prediction of skin sensitization with a particle swarm optimized support vector machine. Int J Mol Sci. 10:3237–3254.
  • Zang Q, Paris M, Lehmann DM, Bell S, Kleinstreuer N, Allen D, Matheson J, Jacobs A, Casey W, Strickland J. 2017. Prediction of skin sensitization potency using machine learning approaches. J Appl Toxicol. 37:792–805.