6,303
Views
381
CrossRef citations to date
0
Altmetric
Research Article

Ascorbic Acid in Plants: Biosynthesis and Function

&
Pages 291-314 | Published online: 29 Sep 2008

REFERENCES

  • Anderson, J. J., Foyer, C. C., and Walker, D. D. 1983. Light-dependent reduction of dehydroascorbate and uptake of exogenous ascorbate by spinach chloroplasts. Planta 158: 442–450
  • Arrigoni, O. 1994. Ascorbate system in plant development. J. Bioenerget. Biomemb. 26: 407–419
  • Arrigoni, O., De Gara, L., Tommasi, F., and Liso, R. 1991. Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiol. 99: 235–238
  • Arrigoni, O., De Gara, L., Paciolla, C., Evidente, A., de Pinto, M. M., and Liso, R. 1997. Lycorine: a powerful inhibitor of L-galactono-γ-lactone dehydrogenase activity. J. Plant Physiol. 150: 362–364
  • Asada, K. 1992. Ascorbate peroxidase — a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant. 85: 235–241
  • Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639
  • Baig, M. M., Kelly, S., and Loewus, F. F. 1970. L-Ascorbic acid biosynthesis in higher plants from L-gulono-1,4-lactone and L-galactono-1,4-lactone. Plant Physiol. 46: 277–280
  • Barber, G. G. 1971. The synthesis of L-galactose by plant enzyme systems. Arch. Biochem. Biophys. 147: 619–623
  • Barber, G. G. 1979. Observations on the mechanism of the reversible epimerization of GDP-mannose to GDP-L-galactose by an enzyme from Chlorella pyrenoidosa. J. Biol. Chem. 254: 7600–7603
  • Bartoli, C., Pastori, G., and Foyer, C. C. 2000. Ascorbate biosynthesis in mitochondria is linked to electron transport chain between complexes III and IV. Plant Physiol. 123: 335–343
  • Baydoun, E. E.-H. and Fry, S. S. 1988. [2-3H]Mannosc incorporation in cultured plant cells: investigation of L-galactose residues of the primary wall. J. Plant Physiol. 132: 484–490
  • Beck, E., Burkert, A., and Hofman, M. 1983. Uptake of L-ascorbate by intact spinach chloroplasts. Plant Physiol. 73: 41–45
  • Berczi, A. and Moller, I. I. 1998. NADH-mono-dehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. Plant Physiol. 116: 1029–1036
  • Bolwell, G. G. 1999. Role of active oxygen species and NO in plant defence responses. Curr. Opin. Plant Biol. 2: 287–294
  • Bowditch, M. M. and Donaldson, R. R. 1990. Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol. 94: 531–537
  • Bratt, C. C., Arvidsson, P. P., Carlsson, M., and Akerlund, H. H. 1995. Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Pholosynth. Res. 45: 169–175
  • Bugos, R. R. and Yamamoto, H. H. 1996. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 93: 6320–6325
  • Bunkelmann, J. J. and Trelease, R. R. 1996. Ascorbate peroxidase — A prominent membrane protein in oilseed glyoxysomes. Plant Physiol. 110: 589–598
  • Burns, J. J. 1967. Ascorbic acid. In: Metabolic Pathways. Vol. 1. pp. 394–411 Greenberg, D. D., Ed. , 3rd ed. Academic Press, New York.
  • Conklin, P. P., Williams, E. E., and Last, R. R. 1996. Environmental stress tolerance of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA. 93: 9970–9974
  • Conklin, P. P., Pallanca, J. J., Last, R. R., and Smirnoff, N. 1997. L-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtcl. Plant Physiol. 115: 1277–1285
  • Conklin, P. P., Norris, S. S., Wheeler, G. G., Williams, E. E., Smirnoff, N., and Last, R. R. 1999. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 96: 4198–4203
  • Conklin, P. P., Saracco, S. S., Norris, S. S., and Last, R. R. 2000. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics, 154: 842–856
  • Cordoba-Pedregosa, M. M., Gonzalez-Reyes, J. J., Canadillas, M. M., Navas, P., and Cordoba, F. 1996. Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol. 112: 1119–1125
  • Dalessandro, G., Piro, G, and Northcote, D. D. 1986. Glucomannan-synthase activity in differentiating cells of Pinus sylvestris. L. Planta 169: 564–574
  • Daniel, G, Volc, J., and Kubatova, E. 1994. Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor and Oudemansiella mucida. Appl. Environ. Microbiol. 60: 2524–2532
  • Davey, M. M., Gilot, C., Persiau, G., Østergaard, J., Han, Y., Bauw, G. G., and Van Montagu, M. M. 1999. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol. 121: 535–543
  • De Gara, L. Tommasi, F., Liso, R., and Arrigoni, O. 1991. Ascorbic acid utilization by prolyl hydroxylase in vivo. Phytochemistry 30: 1397–1399
  • Deleonardis, S., De Lorenzo, G., Borraccino, G., and Dipierro, S. 1995. A specific ascorbate free-radical reductase isozyme participates in the regeneration of ascorbate for scavenging toxic oxygen species in potato-tuber mitochondria. Plant Physiol. 109: 847–851
  • De Tullio, M. M., Paciolla, C., Dalla Vechia, F., Rascio, N., D'Emerico, S., De Gara, L., Liso, R., and Arrigoni, O. 1999. Changes in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation. Planta 209: 424–434
  • Diallinas, G., Pateraki, I., Sanmartin, M., Scossa, A., Stilianou, E., Panopoulos, N. N., and Kanellis, A. A. 1997. Melon ascorbate oxidase: cloning of a multigene family, induction during fruit development and repression by wounding. Plant Mol. Biol. 34: 759–770
  • Elbein, A. A. 1969. Biosynthesis of a cell wall glucomannan in mung bean seedlings. J. Biol. Chem. 244: 1608–1616
  • Esaka, M., Fukui, H., Suzuki, K., and Kubota, K. 1989. Secretion of ascorbate oxidase by suspension-cultured pumpkin cells. Phytochemestry 28: 117–119
  • Esaka, M., Hattori, T., Fujisawa, K., Sakajo, S., and Asahi, T. 1990. Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. Eur. J. Biochem. 191: 537–541
  • Esaka, M., Fujisawa, K., Goto, M., and Kisu, Y. 1992. Regulation of ascorbate oxidase expression by auxin and copper. Plant Physiol. 100: 231–237
  • Eskling, M. and Akerlund, H. H. 1998. Changes in the quantities of violaxanthin de-epoxidase, xanthophylls and ascorbate in spinach upon shift from low to high light. Photosynth. Res. 57: 41–50
  • Eskling, M., Arvidsson, P-O, and Åkerlund, H-E. 1997. The xanthophyll cycle, its regulation and components. Physiol. Plant. 100: 806–816
  • Feingold, D. D. 1982. Aldo (and keto) hexoses and uronic acids. In: Encyclopedia of Plant Physiology, Vol. 13A. pp. 3–76 Loewus, F. F. and Tanner, W., Eds. Springer, Berlin.
  • Forti, G., Barbagallo, R. R., and Inversini, B. 1999. The role of ascorbate in the protection of thylakoids against photoinactivation. Photosynth. Res. 59: 215–222
  • Foyer, C. C., Souriau, N., Perret, S., Lelandais, M., Kunert, K. K., Pruvost, C., and Jouanin, L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology 109: 1047–1057
  • Foyer, C. and Lelandais, M. 1996. A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J. Plant Physiol. 148: 391–398
  • Foyer, C. C. and Mullineaux, P. P. 1998. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues. FEBS Lett. 425: 528–529
  • Foyer, C. C. and Noctor, G. 1999. Leaves in the dark see in the light. Science 284: 599–601
  • Fry, S. S. 1998. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 332: 507–515
  • Gonzales-Reyes, J. J., Hidalgo, A., Caler, J. J., Palos, R., and Navas, P. 1994. Nutrient uptake changes in ascorbate free radical-stimulated roots. Plant Physiol. 104: 271–276
  • Gonzalez-Reyes, J. J., Alcain, F. F., Caler, J. J., Serrano, A., Cordoba, F., and Navas, P. 1995. Stimulation of onion root elongation by ascorbate and ascorbate free radical in Allium cepa L. Protoplasma 184: 31–35
  • Grace, S. S. and Logan, B. B. 1996. Acclimation of foliar antioxidant systems to growth irradiance in three broadleaved evergreen species. Plant Physiol. 112: 1631–1640
  • Grantz, A., Brummell, D. D., and Bennett, A. A. 1995. Ascorbate free-radical reductase messenger-RNA levels are induced by wounding. Plant Physiol. 108: 411–418
  • Harris, G. G., Gibbs, P. P., Ludwig, G, Un, A., Sprengnether, M., and Kolodny, N. 1986. Mannose metabolism in corn and its impact on leaf metabolites, photosyndietic gas exchange, and chlorophyll fluorescence. Plant Physiol. 82: 1081–1089
  • Havir, E. E., Tausta, S. S., and Peterson, R. R. 1997. Purification and properties of violaxanthin de-epoxidase from spinach. Plant Sci. 123: 57–66
  • Heber, U., Miyake, C., Mano, J., Ohno, C., and Asada, K. 1996. Monodehydroascorbate radical detected by electron paramagnetic resonance spectroscopy is a sensitive probe of oxidative stress in intact leaves. Plant Cell Physiol. 37: 1066–1072
  • Herold, A. and Lewis, D. D. 1977. Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79: 1–40
  • Hidalgo, A., Gonzalez-Reyes, J. J., and Navas, P. 1989. Ascorbate free radical enhances vacuolarization in onion root meristems. Plant, Cell Environ. 12: 455–460
  • Horemans, N., Asard, H., and Caubergs, R. R. 1994. The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants. Plant Physiol. 104: 1455–1458
  • Horemans, N., Asard, H., and Caubergs, R. R. 1996. Transport of ascorbate into plasma membranes of Phaseolus vulgaris L. Protoplasma 194: 177–185
  • Horemans, N., Asard, H., and Caubergs, R. R. 1997. The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiol. 114: 1247–1253
  • Horemans, N., Asard, H., Van Gestelen, P., and Caubergs, R. R. 1998a. Facilitated diffusion drives transport of oxidized ascorbate molecules into purified plasma membrane vesicles of Phaseolus vulgaris. Physiol. Plant. 107: 783–789
  • Horemans, N., Asard, H., and Caubergs, J. 1998b. Carrier-mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles shows trans-stimulation. FEBS Lett. 421: 41–44
  • Huh, W. W., Kim, S. S., Yang, K. K., Seok, Y. Y., Hah, Y. Y., and Kang, S. S. 1994. Characterization of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC-10231. Eur. J. Biochem. 225: 1073–1079
  • Imai, T., Karita, S., Shratori, G., Hattori, M., Nunome, T., Ôba, K., and Hirai, M. 1998. L-Galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol. 39: 1350–1358
  • Isherwood, F. F., Chen, Y-T., and Mapson, L. L. 1954. Synthesis of L-ascorbic acid in plants and animals. Biochem. J. 56: 1–14
  • Isherwood, F. F. and Mapson, L. L. 1962. Ascorbic acid metabolism in plants. II. Metabolism. Ann. Rev. Plant Physiol. 13: 329–350
  • Ishikawa, T., Sakai, K., Yoshimura, K., Takeda, T., and Shigeoka, S. 1996. cDNAs encoding spinach stromal and mylakoid-bound ascorbate, differing in the presence or absence of dieir 3'-coding regions. FEBS Lett. 384: 289–293
  • Ishikawa, T., Yoshimura, K., Sakai, K., Tamoi, M., Takeda, T., and Shigeoka, S. 1998. Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol. 39: 23–34
  • Jakob, B. and Heber, U. 1998. Apoplastic ascorbate does not prevent the oxidation of fluorescent amphiphilic dyes by ambient and elevated concentrations of ozone in leaves. Plant Physiol. Biochem. 36: 313–322
  • Jimenez, A., Hernandez, J. J., del Rio, L. L., and Sevilla, F. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114: 275–284
  • Karpinski, S., Escobar, C., Karpinska, B., Creissen, G., and Mullineaux, P. P. 1997. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light. Plant Cell 9: 627–640
  • Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Criessen, G., and Mullineaux, P. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657
  • Kato, N. and Esaka, M. 1996. cDNA cloning and gene expression of ascorbate oxidase in tobacco. Plant Mol. Biol. 30: 833–837
  • Kato, Y., Urano, J., Maki, Y., and Ushimaru, T. 1997. Purification and characterization of dehydroascorbate reductase from rice. Plant Cell Physiol. 38: 173–178
  • Keates, S. S., Tarlyn, N. N., Loewus, F. F., and Franceschi, V. V. 2000. L-galactose: source of oxalic acid in calcium oxalate deposition in Pistia stratiotes. Phytochemistry 53: 433–440
  • Keller, R., Springer, F., Renz, A., and Kossmann, J. 1999. Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J. 19: 131–141
  • Kim, S.-T., Huh, W.-K., Kim, J.-Y., Hwang, S.-W., and Kang, S.-O. 1996. D-Arabinose dehydrogenase and biosynthesis of erythroascorbate in Candida albicans. Biochim. Biophys. Acta 1297: 1–8
  • Kim, S.-T., Huh, W.-K., Kim, J.-Y., Hwang, S.-W., and Kang, S.-O. 1998. D-Arabinose dehydrogenase and its gene from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1429: 29–39
  • Kisu, Y., Harada, Y., Goto, M., and Esaka, M. 1997. Cloning of the pumpkin ascorbate oxidase gene and analysis of a cis-acting region involved in induction by auxin. Plant Cell Physiol. 38: 631–637
  • Kiuchi, K., Nishikimi, N., and Yagi, K. 1982. Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes. Biochem. J. 21: 5076–5082
  • Koshizaka, T., Nishikimi, M., Ozawa, T., and Yagi, K. 1988. Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-γ-lactone oxidase, a key enzyme for ascorbic acid biosynthesis. J. Biol. Chem. 263: 1619–1621
  • Kubo, A., Saji, H., Tanaka, K., and Kondo, N. 1995. Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol. Biol. 29: 479–489
  • Lee, B. B. and Matheson, N. N. 1984. Phosphomannoisomerase and phosphoglucoisomerase in seeds of Cassia coluteoides and some other legumes that synthesize galactomannan. Phytochemestry 23: 983–987
  • Leung, C. C. and Loewus, F. F. 1985. Ascorbic acid in pollen: conversion of L-galactono-l,4-lactone to L-ascorbic acid by Lilium longiflorum. Plant Sci. 39: 45–48
  • Loewus, F. F. 1963. Tracer studies of ascorbic acid formation in plants. Phytochemestry 2: 109–128
  • Loewus, F. F. 1988. Ascorbic acid and its metabolic products. In: The Biochemistry of Plants, Vol. 14. pp. 85–107 Preiss, J., Ed. Academic Press, New York.
  • Loewus, F. F. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52: 193–210
  • Loewus, F. F. and Loewus, M. M. 1987. Biosynthesis and metabolism of ascorbate in plants. Crit. Rev. Plant Sci. 5: 101–119
  • Loewus, M. M., Bedgar, D. D., Saito, K., and Loewus, F. F. 1990. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. Plant Physiol. 94: 1492–1495
  • Logan, B. B., Barker, D. D., Demmig-Adams, B., and Adams, W. W. 1996. Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant, Cell Environ. 19: 1083–1090
  • Loughman, B. B., Ratcliffe, R. R., and Southon, T. T. 1989. Observations on the cytoplasmic and vacuolar orthophosphate pools in leaf tissues using in vivo 31P-NMR spectroscopy. FEBS Lett. 242: 279–284
  • Lukaszewski, K. K. and Blevins, D. D. 1996. Root growth inhibition in boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate metabolism. Plant Physiol. 112: 1135–1140
  • Maier, E. and Kurtz, G. 1982. D-galactose dehydrogenase from Pseudomonas fluorescens. Methods in Enzymology 89: 176–181
  • Mano, J., Ushimaru, T., and Asada, K. 1997. Ascorbate in thylakoid lumen as an endogenous electron donor to Photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth. Res. 53: 197–204
  • Mapson, L. L. and Isherwood, F. F. 1956. Biological synthesis of L-ascorbic acid: the conversion of derivatives of D-galacturonic acid to L-ascorbate in plant extracts. Biochem. J. 64: 13–22
  • Mapson, L. L., Isherwood, F. F., and Chen, Y. Y. 1954. Biological synthesis of L-ascorbic acid: the conversion of L-galactono-γ-lactone into L-ascorbic acid by plant mitochondria. Biochem. J. 56: 21–28
  • Mapson L. L. and Breslow E. 1958. Biological synthesis of L-ascorbic acid: L-galactono-γ-lactone dehydrogenase. Biochem. J. 68: 395–406
  • May, J. J., Cobb, C. C., Mendiratta, S., Hill, K. K., and Burk, R. R. 1998. Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J. Biol. Chem. 273: 23039–23045
  • Mittler, R., Feng, X. X., and Cohen, M. 1998. Posttranscriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10: 461–473
  • Mittler, R., Lam, E., Shulaev, V., and Cohen, M. 1999. Signals controlling the expression of cytosolic ascorbate peroxidase during pathogen-induced programmed cell death in tobacco. Plant Mol. Biol. 39: 1025–1035
  • Miyake, C. and Asada, K. 1992. Thylakoid bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product, monodehydroascorbate radicals in the thylakoids. Plant Cell Physiol. 33: 541–553
  • Moldau, H., Bichele, I., and Huve, K. 1998. Dark-induced ascorbate deficiency in leaf cell walls increases plasmalemma injury under ozone. Planta 207: 60–66
  • Morell, S., Follmann, H., De Tullio, M., and Haberlein, I. 1997. Dehydroascorbate and dehydroascorbate reductase are phantom indicators of oxidative stress in plants. FEBS Lett. 414: 567–570
  • Morita, S., Kaminaka, H., Masumura, T., and Tanaka, K. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol. 40: 417–422
  • Mozafar, A. and Oertli, J. J. 1993. Vitamin C (ascorbic acid): uptake and metabolism by soybean. J. Plant Physiol. 141: 316–321
  • Mutsuda, M., Ishikawa, T., Takeda, T., and Shigeoka, S. 1995. Subcellular localization and properties of L-galactono-γ-lactone dehydrogenase in spinach leaves. Biosci. Biotech. Biochem. 59: 1983–1984
  • Neubauer, C. and Yamamoto, H. H. 1994. Membrane barriers and Mehler-peroxidase limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts. Photosynth. Res. 39: 137–147
  • Nishikimi, M., Ohta, Y., and Ishikawa, T. 1998. Identification by bacterial expression of the yeast genomic sequence encoding L-galactono-γ-lactone oxidase, the homologue of L-ascorbic aci D-synthesizing enzyme of higher animals. Biochem. Mol. Biol. Int. 44: 907–913
  • Niyogi, K. K. 1999. Photoprotection revisited: genetic and molecular approaches. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 333–359
  • Noctor, G. and Foyer, C. C. 1998. Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant Physiol. Mol. Biol. 49: 249–279
  • Ôba, K., Fukui, M., Imai, Y., Iriyama, S., and Nogami, K. 1994. L-Galactono-γ-lactone dehydrogenase: partial characterization, induction of activity and role in synthesis of ascorbic acid in wounded white potato tuber tissue. Plant Cell Physiol. 35 473-478.
  • Ôba, K., Ishikawa, S., Nishikawa, M., Mizuno, H., and Yamamoto, T. 1995. Purification and properties of L-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J. Biochem. 117: 120–124
  • Orvar, B. B. and Ellis, B. B. 1997. Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J. 11: 1297–1305
  • Østergaard, J., Persiau, G., Cavey, M. M., Bauw, G., and Van Montagu, M. 1997. Isolation and cDNA cloning for L-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. J. Biol. Chem. 272: 30009–30016
  • Ohkawa, J., Okada, N., Shinmyo, A., and Takano, M. 1989. Primary structure of cucumber (Cucumis sativa) ascorbate oxidase deduced fron cDNA sequence-homology with blue copper proteins and tissue-specific expression. Proc. Natl. Acad. Sci. U.S.A. 86: 1239–1243
  • Pallanca, J. J. and Smirnoff, N. 1999. Ascorbic acid metabolism in pea seedlings. A comparison of D-glucosone, L-sorbosone and L-galactono-l,4-lactone as ascorbate precursors. Plant Physiol. 120: 453–461
  • Pallanca, J. J. and Smirnoff, N. 2000. The control of ascorbic acid synthesis and turnover in pea seedlings. J. Exp. Bot. 51: 699–674
  • Pego, J. J., Weisbeck, P. P., and Smeekens, S. C. M. 1999. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol. 119: 1017–1023
  • Piro, G., Zuppa, A. Dalessandro, G., and Northcote, D. D. 1993. Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases. Planta. 190: 206–220
  • Popp, M. and Smirnoff, N. 1995. Polyol accumulation and metabolism during water deficit. In: Environment and Plant Metabolism: Flexibility and Acclimation. Smirnoff, N., Ed. pp. 199–215 Bios Scientific Publishers, Oxford.
  • Prescott, A. A. and John, P. 1996. Dioxygenases: molecular structure and role in metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47: 245–271
  • Rautenkranz, A. A. F., Li, L., Machler, F., Martinoia, E., and Oertli, J. J. 1994. Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare cv. Gerbil) leaves. Plant Physiol. 106: 187–193
  • Ray, S. S. 1934. On the nature of the precursor of the vitamin C in the Vegetable Kingdom. I. Vitamin C in the growing pea seedling. Biochem. J. 28: 996–1003
  • Remstrøm, B., Grün, M., and Loewus, F. F. 1982/3. Biosynthesis of L-ascorbic acid in Chlorella pyrenoidosa. Plant Sci. Letts. 28: 299–305
  • Roberts, R. R. 1971. The metabolism of D-mannose-14C to polysaccharide in corn roots. Specific labeling of L-galactose, D-mannose, and L-fucose. Arch. Biochem. Biophys. 145: 685–692
  • Roberts, R. R. and Harrer, E. 1973. Determination of L-galactose in polysaccharide material. Phytochemis-try 12: 2679–12682
  • Rockholm, D. D. and Yamamoto, H. H. 1996. Violaxanthin de-epoxidase — purification of a 43-kilodalton lumenal protein from lettuce by lipiD-affinity precipitation with monogalactosyldiacylglyceride. Plant Physiol. 110: 697–703
  • Rumpho, M. M., Edwards, G. G., and Loeescher, W. W. 1983. A pathway for photosynthetic carbon flow to mannitol in celery leaves. Activity and localization of key enzymes. Plant Physiol. 73: 869–873
  • Rumsey, S. S., Welch, R. R., Garraffo, H. M., Ge, P., Lu, S. S., Crossman, A. A., Kirk, K. K., and Levine, M. 1999. Specificity of ascorbate analogs for ascorbate transport: synthesis and detection of [125I]-6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties. J. Biol. Chem. 274: 23215–23222
  • Saito, K., Ohmoto, J., and Kuriha, N. 1997. Incorporation of 18O into oxalic, L-threonic and L-tartaric acids during cleavage of L-ascorbic and 5-keto-D-gluconic acids in plants. Phytochemistry 44: 805–809
  • Saito, K., Nick, J. J., and Loewus, F. F. 1990. D-Glucosone and L-sorbosone, putative intermediates of L-ascorbic acid biosynthesis in detached bean and spinach leaves. Plant Physiol. 94: 1496–1500
  • Santos, M., Gousseau, H., Lister, C., Foyer, C., Creissen, G., and Mullineaux, P. 1996. Cytosolic ascorbate peroxidase from Arabidopsis thaliana L is encoded by a small multigene family. Planta 198: 64–69
  • Schachter, H., Samey, J., McGuire, E. E., and Roseman, S. 1969. Isolation of diphosphopyridine nucleotide-dependent L-fucose dehydrogenase from pork liver. J. Biol. Chem. 244: 4785–4792
  • Schnarrenberger, C. 1990. Characterization and compartmentation, in green leaves, of hexokinases with different specificities for glucose, fructose and mannose for nucleoside triphosphates. Planta 181: 249–255
  • Siendones, E., Gonzalez-Reyes, J. J., Santos-Ocaña, C., Navas, P., and Córdoba, F. 1999. Biosynthesis of ascorbic acid in kidney bean. L-galactono-γ-lactone dehydrogenase is an instrinsic protein located at the mitochondrial inner membrane. Plant Physiol. 120: 907–912
  • Smirnoff, N. 1995. Antioxidant systems and plant response to the environment. In: Environment and Plant Metabolism: Flexibility and Acclimation, pp. 217–243 Smirnoff, N., Ed. Bios Scientific Publishers, Oxford.
  • Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot. 78: 661–669
  • Smirnoff, N. and Pallanca, J. J. 1996. Ascorbate metabolism in relation to oxidative stress. Biochem. Soc. Trans. 24: 472–478
  • Smirnoff, N. and Wheeler, G. G. 1999. Ascorbic acid metabolism in plants. In: Plant Carbohydrate Biochemistry. pp. 215–229 Bryant, J. J., Burrell, M. M., and Kruger, N. N., Eds. Bios Scientific Publishers, Oxford.
  • Sommer-Knudsen, J., Bacic, A., and Clarke, A. A. 1998. Hydroxyproline-rich plant glycoproteins. Phytochemislry 47: 483–497
  • Spickett, C. C., Smirnoff, N., and Pitt, A. A. 2000. The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant. Free Rad. Biol. Med. 24: 649–652
  • Stein, J. J. and Hansen, G. 1999. Mannose induces an endonuclease responsible for DNA laddering in plants. Plant Physiol. 121: 71–79
  • Sturgeon, B. B., Sipe, H. H., Barr, D. D., Corbett, J. J. Martinez, J. G., and Mason, R. R. 1998. The fate of the oxidizing tyrosyl radical in the presence of glutathione and ascorbate — implications for the radical sink hypothesis. J. Biol. Chem. 273: 30116–30121
  • Takahashi, H., Chen, Z., Du, H., Liu, Y., and Klessig, D. D. 1997. Development of necrosis and activation of disease resistance in tobacco plants with severely reduced catalase levels. Plant J. 11: 993–1005
  • Torsethaugen, G, Pitcher, L. L., Zilinskas, B. B., and Pell, E. E. 1997. Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol. 114: 529–537
  • Trumper, S., Follmann, H., and Haberlein, I. 1994. A novel dehydroascorbate reductase from spinach-chloroplasts homologous to plant trypsin-inhibitor. FEBS Lett. 352: 159–162
  • Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y. Wada, K., and Kobayshi, H. 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11: 1195–1206
  • Vanacker, H. Carver, T. L. W., and Foyer, C H. 1998. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 117: 1103–1114
  • Van Duijn, M. M., Van der Zee, J., VanSteveninck, J., and Van den Broek, P. J. A. 1998. Ascorbate stimulates ferricyanide reduction in Hl-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J. Biol. Chem. 273: 13415–13420
  • Vera, J. J., Rivas, C. C., Fischbarg, J., and Golde D. D. 1993. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364: 79–82
  • Wang, J., Zhang, H., and Allen, R. R. 1999. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 40: 725–732
  • Welch, R. R., Wang, Y., Crossman, A., Park, J. J., Kirk, K. K., and Levine, M. 1995. Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J. Biol. Chem. 270: 12584–12592
  • Welinder, K. K. 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2: 388–393
  • Wells, W. W., Xu, D. D., Yang, Y. Y., and Rocque, P. P. 1990. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J. Biol. Chem. 265: 15361–15364
  • Wendehenne, D., Durner, J., Chen, Z. Z., and Klessig, D. D. 1998. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry 47: 651–657
  • Wheeler, G. G., Jones, M. M., and Smirnoff, N. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393: 365–369
  • Wozniewski, T., Blaschek, W., and Franz, G. 1991. In vitro biosynthesis of a reserve glucomannan from Lilium testaceum. Phytochemistry 30: 3579–3583
  • Yamaguchi, K., Mori, H., and Nishimura, M. 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol. 36: 1157–1162
  • Yamaguchi, K., Hayashi, M., and Nishimura, M. 1996. cDNA cloning of thylakoid-bound ascorbate peroxidase in pumpkin and its characterization. Plant Cell Physiol. 37: 405–409

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.