3,372
Views
300
CrossRef citations to date
0
Altmetric
Research Article

Life with Carbon Monoxide

Pages 165-195 | Published online: 23 Mar 2010

REFERENCES

  • Adams M.W. W., Kletzin A.. 1996. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic archaea.. Adv Protein Chem. 48: 101–180. [PUBMED], [INFOTRIEVE]
  • Anderson M. E., DeRose V. J., Hoffman B. M., Lindahl P. A.. 1993. Identification of a cyanide binding site in CO dehydrogenase from Clostridium thermoaceticum using EPR and ENDOR spectroscopies.. J Am Chem Soc. 115: 12204–12205
  • Andreesen J. R., Schaupp A., Neurater C., Brown A., Ljungdahl L. G.. 1973. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2.. J Bacteriol. 114: 743–751. [PUBMED], [INFOTRIEVE]
  • Aono S.. 2003. Biochemical and biophysical properties of the CO-sensing transcriptional activator CooA.. Acc Chem Res. 36: 825–831. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Aono S., Nakajima H., Saito K., Okada M.. 1996. A novel heme protein that acts as a carbon monoxide- dependent transcriptional activator in Rhodospirillum rubrum.. Biochem Biophys Res Commun. 228(3)752–756. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Arendsen A. F., Soliman M. Q., Ragsdale S. W.. 1999. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum.. J Bacteriol. 181(5)1489–1495. [PUBMED], [INFOTRIEVE]
  • Bagley K. A., Duin E. C., Roseboom W., Albracht S.P., J., Woodruff W. H.. 1995. Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum.. Biochemistry. 34(16)5527–5535. [PUBMED], [INFOTRIEVE]
  • Banerjee R., Ragsdale S. W.. 2003. The many faces of vitamin B12: Catalysis by cobalamin-dependent enzymes.. Ann Rev Biochem. 72: 209–247. [PUBMED], [INFOTRIEVE]
  • Barondeau D. P., Lindahl P. A.. 1997. Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and mechanism of acetyl coenzyme A synthesis.. J Am Chem Soc. 119(17)3959–3970
  • Bartholomew G. W., Alexander M.. 1979. Microbial metabolism of carbon monoxide in culture and in soil.. Appl Environ Microbiol. 37: 932–937. [PUBMED], [INFOTRIEVE]
  • Beijerinck M., van, Delden A.. 1903. On a colorless bacterium, whose carbon-food comes from the atmosphere. Proc Section Sci Kon Akademie van Wetenschappen, Amsterdam. 5: 389–413
  • Bertini I., Luchinat C.. 1994; The reaction pathways of zinc enzymes and related biological catalysts. In, Bioinorganic chemistry. pp. 31–106, I., Bertini, H. B., Gray, S. J., Lippard, J. S., Valentine. University Science Books. Mill Valley, , CA
  • Bhatnagar L., Krzycki J. A., Zeikus J. G.. 1987. Analysis of hydrogen metabolism in Methanosarcina barkeri: regulation of hydrogenase and role of CO-dehydrogenase in H2 production.. FEMS Microbiol Lett. 41: 337–343
  • Black G. W., Lyons C. M., Williams E., Colby J., Kehoe M., O'Reilly C.. 1990. Cloning and expression of the carbon monoxide dehydrogenase genes from Pseudomonas thermocarboxydovorans strain C2.. FEMS Microbiol Lett. 58: 249–254. [PUBMED], [INFOTRIEVE]
  • Bock A.-K., Prieger-Kraft A., Schönheit P.. 1994. Pyruvate—a novel substrate for growth and methane mormation in Methanosarcina barkeri.. Arch Microbiol. 161: 33–46
  • Boehning D., Snyder S. H.. 2003. Novel neural modulators.. Annu Rev Neurosci. 26: 105–131. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Bramlett M. R., Tan X., Lindahl P. A.. 2003. Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper.. J Am Chem Soc. 125(31)9316–9317. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Bray R. C., George G. N., Lange R., Meyer O.. 1983. Studies by e.p.r. spectroscopy of carbon monoxide oxidases from Pseudomonas carboxydovorans and Pseudomonas carboxydohydrogena.. Biochem J.. 211: 687–694. [PUBMED], [INFOTRIEVE]
  • Brewer J. M., Ljungdahl L., Spencer T. E., Neece S. H.. 1970. Physical properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum.. J Biol Chem. 245(18)4798–4803. [PUBMED], [INFOTRIEVE]
  • Brock T., Schlegel H.. 1989. Introduction, In. Autotrophic bacteria. pp. 1–15, H., Schlegel, B., Bowien. Science Tech Publishers, Madison, WI
  • Brock T. D.. 1989. Evolutionary relationships of the autotrophic bacteria, In. Autotrophic bacteria. pp. 499–512, H. G., Schlegel, B., Bowien. Science Tech Publishers, Madison, WI
  • Brostedt E., Nordlund S.. 1991. Purification and partial characterization of a pyruvate oxidoreductase from the photosynthetic bacterium Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J. 279(Pt 1)155–158. [PUBMED], [INFOTRIEVE]
  • Brunold T. C.. 2004. Spectroscopic and computational insights into the geometric and electronic properties of the A cluster of acetyl-coenzyme A synthase. J Biol Inorg Chem, in press.
  • Cammack R., Kerscher I., Oesterhelt D.. 1980. A stable free radical intermediate in the reaction of 2-oxoacid: ferredoxin oxidoreductases of Halobacterium halobium.. FEBS Lett. 118: 271–273
  • Chabriere E., Charon M.-H., Volbeda A., Pieulle L., Hatchikian E. C., Fontecilla-Camps J.-C.. 1999. Crystal structures of the key anaerobic enzyme pyruvate: ferredoxin oxidoreductase, free and in complex with pyruvate.. Nat Struct Biol. 6(2)182–190. [PUBMED], [INFOTRIEVE]
  • Chabriere E., Vernede X., Guigliarelli B., Charon M. H., Hatchikian E. C., Fontecilla-Camps J. C.. 2001. Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase.. Science. 294(5551)2559–2563. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Cheesbrough T. M., Kolattukudy P. E.. 1984. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum.. Proc Nat Acad Sci USA. 81: 6613–6617. [PUBMED], [INFOTRIEVE]
  • Chen J., Huang S., Seravalli J., Jr., H. G., Swartz D. J., Ragsdale S. W., Bagley K. A.. 2003. Infrared studies of carbon monoxide binding to carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica.. Biochemistry. 42(50)14822–14830. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Chen Z., Lemon B. J., Huang S., Swartz D. J., Peters J. W., Bagley K. A.. 2002. Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from Clostridium pasteurianum I: examination of its light sensitivity at cryogenic temperatures.. Biochemistry. 41(6)2036–2043. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Clark J. E., Ljungdahl L. G.. 1982. Purification and properties of 5,10-methenyltetrahydrofolate cyclohydrolase.. J Biol Chem. 257: 3833–3836. [PUBMED], [INFOTRIEVE]
  • Clark J. E., Ljungdahl L. G.. 1984. Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum.. J Biol Chem. 259: 10845–10889. [PUBMED], [INFOTRIEVE]
  • Coyle C. M., Puranik M., Youn H., Nielsen S. B., Williams R. D., Kerby R. L., Roberts G. P., Spiro T. G.. 2003. Activation mechanism of the CO sensor CooA. Mutational and resonance Raman spectroscopic studies.. J Biol Chem. 278(37)35384–35393. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Crabtree R. H.. 1988; The organometallic chem of the transition metals. John Wiley, New York
  • Craft J. L., Mandimutsira B. S., Fujita K., Riordan C. G., Brunold T. C.. 2003. Spectroscopic and computational studies of a Ni(+)-CO model complex: implications for the acetyl-CoA synthase catalytic mechanism.. Inorg Chem. 42(3)859–867. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Dai Y., Wensink P. C., Abeles R. H.. 1999. One protein, two enzymes.. J Biol Chem. 274(3)1193–1195. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Daniel S. L., Hsu T., Dean S. I., Drake H. L.. 1990. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.. J Bacteriol. 172: 4464–4471. [PUBMED], [INFOTRIEVE]
  • Darnault C., Volbeda A., Kim E. J., Legrand P., Vernede X., Lindahl P. A., Fontecilla-Camps J. C.. 2003. Ni-Zn-[Fe(4)-S(4)] and Ni-Ni-[Fe(4)-S(4)] clusters in closed and open alpha subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase.. Nat Struct Biol. 10(4)271–279. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • DeRose V. J., Telser J., Anderson M. E., Lindahl P. A., Hoffman B. M.. 1998. A multinuclear ENDOR study of the C-cluster in CO dehydrogenase from Clostridium thermoaceticum: evidence for HxO and histidine coordination to the [Fe4S4] center.. J Am Chem Soc. 120(34)8767–8776
  • Diekert G., Hansch M., Conrad R.. 1984. Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate?. Arch Microbiol. 138: 224–228
  • Diekert G., Ritter M.. 1983. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum.. FEBS Lett. 151: 41–44. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Diekert G., Thauer R. K.. 1980. The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum. FEMS Microbiol Lett. 7: 187–189
  • Diekert G. B., Graf E. G., Thauer R. K.. 1979. Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium thermoaceticum.. Arch Microbiol. 122: 117–120
  • Diekert G. B., Thauer R. K.. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum.. J Bacteriol. 136: 597–606. [PUBMED], [INFOTRIEVE]
  • Dioum E. M., Rutter J., Tuckerman J. R., Gonzalez G., Gilles-Gonzalez M. A., McKnight S. L.. 2002. NPAS2: a gas-responsive transcription factor.. Science. 298(5602)2385–2387. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Dobbek H., Gremer L., Kiefersauer R., Huber R., Meyer O.. 2002. Catalysis at a dinuclear [CuSMo(══O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution.. Proc Natl Acad Sci USA. 99(25)15971–15976. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Dobbek H., Gremer L., Meyer O., Huber R.. 1999. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine.. Proc Natl Acad Sci USA. 96(16)8884–8889. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Dobbek H., Svetlitchnyi V., Gremer L., Huber R., Meyer O.. 2001. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster.. Science. 293(5533)1281–1285. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Dore J., Morvan B., Rieu-Lesme F., Goderel I., Gouet P., Pochart P.. 1995. Most probable number enumeration of H2-utilizing acetogenic bacteria from the digestive tract of animals and man.. FEMS Microbiol Lett. 130(1)7–12. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Doukov T., Seravalli J., Stezowski J., Ragsdale S. W.. 2000. Crystal structure of a methyltetrahydrofolate and corrinoid dependent methyltransferase.. Structure. 8: 817–830. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Doukov T. I., Iverson T., Seravalli J., Ragsdale S. W., Drennan C. L.. 2002. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase.. Science. 298(5593)567–572. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Drake H. L., Hu S.-I., Wood H. G.. 1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum.. J Biol Chem. 255: 7174–7180. [PUBMED], [INFOTRIEVE]
  • Drake H. L., Hu S.-I., Wood H. G.. 1981. Purification of five components from Clostridium thermoacticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase.. J Biol Chem. 256: 11137–11144. [PUBMED], [INFOTRIEVE]
  • Drennan C. L., Doukov T. I., Ragsdale S. W.. 2004. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: A story in pictures. J Biol Inorg Chem, in press.
  • Drennan C. L., Heo J., Sintchak M. D., Schreiter E., Ludden P. W.. 2001. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase.. Proc Natl Acad Sci USA. 98(21)11973–11978. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ensign S. A., Bonam D., Ludden P. W.. 1989. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum.. Biochem. 28(12)4968–4973
  • Fan C., Gorst C. M., Ragsdale S. W., Hoffman B. M.. 1991. Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR.. Biochemistry. 30: 431–435. [PUBMED], [INFOTRIEVE]
  • Feng J., Lindahl P. A.. 2004. Carbon monoxide dehydrogenase from Rhodospirillum rubrum: effect of redox potential on catalysis.. Biochemistry. 43(6)1552–1559. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Fontecilla-Camps J.-C., Ragsdale S. W.. 1999. Nickel-iron-sulfur active sites: hydrogenase and CO dehydrogenase, In. Advances in Inorganic Chemistry. Vol. 47: pp. 283–333, A. G., Sykes, R., Cammack. Academic Press, Inc., San Diego, CA
  • Ford P. A., Rokicki A.. 1988. Nucleophilic activation of carbon monoxide. Applications to homogeneous catalysis by metal carbonyls.. Adv Organometal Chem. 28: 139–218
  • Fox J. D., He Y. P., Shelver D., Roberts G. P., Ludden P. W.. 1996. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum.. J Bacteriol. 178(21)6200–6208. [PUBMED], [INFOTRIEVE]
  • Funk T., Gu W., Friedrich S., Wang H., Gencic S., Grahame D. A., Cramer S. P.. 2004. Chemically distinct Ni sites in the A-cluster in subunit beta of the acetyl-CoA decarbonylase/synthase complex from Methanosarcina thermophila: Ni L-edge absorption and X-ray magnetic circular dichroism analyses.. J Am Chem Soc. 126(1)88–95. [PUBMED], [INFOTRIEVE]
  • Furdui C., Ragsdale S. W.. 2002. The roles of coenzyme A in the pyruvate: ferredoxin oxidoreductase reaction mechanism: rate enhancement of electron transfer from a radical intermediate to an iron-sulfur cluster.. Biochemistry. 41(31)9921–9937. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Gencic S., Grahame D. A.. 2003. Nickel in subunit beta of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens: Catalytic properties and evidence for a binuclear Ni-Ni site.. J Biol Chem. 278(8)6101–6110. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Gencic S., LeClerc G. M., Gorlatova N., Peariso K., Penner-Hahn J. E., Grahame D. A.. 2001. Zinc-thiolate intermediate in catalysis of methyl group transfer in Methanosarcina barkeri.. Biochemistry. 40(43)13068–13078. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Gnida M., Ferner R., Gremer L., Meyer O., Meyer-Klaucke W.. 2003. A novel binuclear [CuSMo] cluster at the active site of carbon monoxide dehydrogenase: characterization by X-ray absorption spectroscopy.. Biochemistry. 42(1)222–230. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Grahame D. A.. 2003. Acetate C─C bond formation and decomposition in the anaerobic world: the structure of a central enzyme and its key active-site metal cluster.. Trends Biochem Sci. 28(5)221–224. [PUBMED], [INFOTRIEVE]
  • Grahame D. A., Demoll E.. 1995. Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri.. Biochemistry. 34(14)4617–4624. [PUBMED], [INFOTRIEVE]
  • Gu W., Gencic S., Cramer S. P., Grahame D. A.. 2003. The A-cluster in subunit beta of the acetyl-CoA decarbonylase/synthase complex from Methanosarcina thermophila: Ni and Fe K-edge XANES and EXAFS analyses.. J Am Chem Soc. 125(50)15343–15351. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Gu W., Seravalli J., Ragsdale S. W., Cramer S. P.. 2004. CO-induced structural rearrangement of the C-cluster in Carboxydothermus hydrogenoformans CO dehydrogenase—evidence from Ni K-edge X-ray absorption spectroscopy. Biochemistry, in press.
  • Happe R. P., Roseboom W., Pierik A. J., Albracht S. P., Bagley K. A.. 1997. Biological activation of hydrogen. Nature. 385, 6612: 126
  • Harder S. A., Lu W.-P., Feinberg B. F., Ragsdale S. W.. 1989. Spectroelectrochemical studies of the corrinoid/iron-sulfur protein from Clostridium thermoaceticum.. Biochemistry. 28: 9080–9087. [PUBMED], [INFOTRIEVE]
  • Hausinger R. P.. 2003. Ni and CO: more surprises.. Nat Struct Biol. 10(4)234–236. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Heo J., Halbleib C. M., Ludden P. W.. 2001a. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum.. Proc Natl Acad Sci USA. 98(14)7690–7693. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Heo J., Staples C. R., Ludden P. W.. 2001b. Redox-dependent CO2 reduction activity of CO dehydrogenase from Rhodospirillum rubrum.. Biochemistry. 40(25)7604–7611. [PUBMED], [INFOTRIEVE]
  • Hino S., Tauchi H.. 1987. Production of carbon monoxide from aromatic amino acids by Morganella morganii.. Arch Microbiol. 148: 167–171
  • Horner D. S., Hirt R. P., Embley T. M.. 1999. A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes.. Mol Biol Evol. 16(9)1280–1291. [PUBMED], [INFOTRIEVE]
  • Hsu T., Daniel S. L., Lux M. F., Drake H. L.. 1990a. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions.. J Bacteriol. 172(1)212–217. [PUBMED], [INFOTRIEVE]
  • Hsu T., Lux M. F., Drake H. L.. 1990b. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum.. J Bacteriol. 172: 5901–5907. [PUBMED], [INFOTRIEVE]
  • Hu S.-I., Drake H. L., Wood H. G.. 1982. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum.. J Bacteriol. 149(2)440–448. [PUBMED], [INFOTRIEVE]
  • Hu S.-I., Pezacka E., Wood H. G.. 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corrinoid protein.. J Biol Chem. 259(14)8892–8897. [PUBMED], [INFOTRIEVE]
  • Hu Z. G., Spangler N. J., Anderson M. E., Xia J. Q., Ludden P. W., Lindahl P. A., Münck E.. 1996. Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases.. J Am Chem Soc. 118(4)830–845
  • Huber C., Wachtershauser G.. 1997. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions [see comments].. Science. 276(5310)245–247. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Hugendieck I., Meyer O.. 1992. The structural genes encoding CO dehydrogenase subunits (cox L, M. and S) in Pseudomonas carboxydovorans OM5 reside on plasmid pHCG3 and are, with the exception of Streptomyces thermoautotrophicus, conserved in carboxydotrophic bacteria.. Arch Microbiol. 157: 301–304. [PUBMED], [INFOTRIEVE]
  • Hugenholtz J., Ljungdahl L. G.. 1989. Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum.. J Bacteriol. 171(5)2873–2875. [PUBMED], [INFOTRIEVE]
  • Hughes N. J., Chalk P. A., Clayton C. L., Kelly D. J.. 1995. Identification of carboxylation enzymes and characterization of a novel four-subunit pyruvate: flavodoxin oxidoreductase from Helicobacter pylori.. J Bacteriol. 177(14)3953–3959. [PUBMED], [INFOTRIEVE]
  • Jeon W. B., Cheng J., Ludden P. W.. 2001. Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum.. J Biol Chem. 276(42)38602–38609. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Johnson J. L., Rajagopalan K. V., Meyer O.. 1990. Isolation and characterization of a second molybdopterin dinucleotide: molybdopterin cytosine dinucleotide.. Arch Biochem Biophys. 283: 542–545. [PUBMED], [INFOTRIEVE]
  • Kaserer H.. 1906. Die oxydation des wasserstoffes durch microorganismen.. Zentralblatt fur Bakteriologie, II Abteilung. 16: 681–696
  • Kerby R., Zeikus J. G.. 1983. Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source.. Curr Microbiol. 8: 27–30
  • Kerby R. L., Ludden P. W., Roberts G. P.. 1997. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ.. J Bacteriol. 179(7)2259–2266. [PUBMED], [INFOTRIEVE]
  • Kerscher L., Oesterhelt D.. 1982. Pyruvate: ferredoxin oxidoreductase—new findings on an ancient enzyme. Trends Biochem Sci. 7(October)371–374
  • Kletzin A., Adams M. W.W.. 1996. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol. 178(1)248–257. [PUBMED], [INFOTRIEVE]
  • Kumar M., Lu W.-P., Liu L., Ragsdale S. W.. 1993. Kinetic evidence that CO dehydrogenase catalyzes the oxidation of CO and the synthesis of acetyl-CoA at separate metal centers.. J Am Chem Soc. 115: 11646–11647
  • Kumar M., Lu W.-P., Ragsdale S. W.. 1994. Binding of carbon disufide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, CO dehydrogenase, from Clostridium thermoaceticum.. Biochemistry. 33: 9769–9777. [PUBMED], [INFOTRIEVE]
  • Kumar M., Ragsdale S. W.. 1992. Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy. J Am Chem Soc. 114: 8713–8715
  • Lantzsch K.. 1922. Actinomyces oligocarbophyilus (Bacillus oligocarbophilus Beij.), sein formwechsel und seine physiologie.. Zentralblat fur Bakteriologie, II Abteilung. 57: 309–319
  • Lanzilotta W. N., Schuller D. J., Thorsteinsson M. V., Kerby R. L., Roberts G. P., Poulos T. L.. 2000. Structure of the CO sensing transcription activator CooA. Nat Struct Biol. 7: 876–880. [PUBMED], [INFOTRIEVE]
  • Lebertz H., Simon H., Courtney L. F., Benkovic S. J., Zydowsky L. D., Lee K., Floss H. G.. 1987. Stereochemistry of acetic acid formation from 5-methyl-tetrahydrofolate by Clostridium thermoaceticum.. J Am Chem Soc. 109: 3173–3174
  • Leduc J., Thorsteinsson M. V., Gaal T., Roberts G. P.. 2001. Mapping CooA.RNA polymerase interactions. Identification of activating regions 2 and 3 in CooA, the co-sensing transcriptional activator.. J Biol Chem. 276(43)39968–39973. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Lin W., Whitman W. B.. 2004. The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis.. Arch Microbiol. 181: 68–73. [PUBMED], [INFOTRIEVE]
  • Lin W. C., Yang Y. L., Whitman W. B.. 2003. The anabolic pyruvate oxidoreductase from Methanococcus maripaludis.. Arch Microbiol. 179(6)444–456. [PUBMED], [INFOTRIEVE]
  • Linck R. C., Spahn C. W., Rauchfuss T. B., Wilson S. R.. 2003. Structural analogues of the bimetallic reaction center in acetyl CoA synthase: a Ni─Ni model with bound CO.. J Am Chem Soc. 125(29)8700–8701. [PUBMED], [INFOTRIEVE]
  • Lindahl P. A.. 2002. The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel?. Biochemistry. 41(7)2097–2105. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Lindahl P. A.. 2004. Acetyl-coenzyme A synthase: The case for a Nip0-based mechanism of catalysis. J Biol Inorg Chem, in press.
  • Lindahl P. A., Münck E., Ragsdale S. W.. 1990a. CO dehydrogenase from Clostridium thermoaceticum: EPR and electrochemical studies in CO2 and argon atmospheres. J Biol Chem. 265: 3873–3879. [PUBMED], [INFOTRIEVE]
  • Lindahl P. A., Ragsdale S. W., Münck E.. 1990b. Mössbauer studies of CO dehydrogenase from Clostridium thermoaceticum.. J Biol Chem. 265: 3880–3888. [PUBMED], [INFOTRIEVE]
  • Ljungdahl L. G.. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria.. Ann Rev Microbiol. 40: 415–450
  • Ljungdahl L. G., Andreesen J. R.. 1978. Formate dehydrogenase, a selenium-tungsten enzyme from Clostridium thermoaceticum.. Methods Enzymol. 53: 360–372. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ljungdahl L. G., O'Brien W. E., Moore M. R., Liu M. T.. 1980. Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum.. Methods Enzymol. 66: 599–609. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Loke H. K., Lindahl P. A.. 2003. Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum. J Inorg Biochem. 93(1–2)33–40. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Lovell C. R., Przybyla A., Ljungdahl L. G.. 1990. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry. 29: 5687–5694. [PUBMED], [INFOTRIEVE]
  • Lukehart C. M.. 1985; Fundamental transition metal organometallic chemistry. Brooks/Cole, Monterey, CA
  • Martin B. D., Finke R. G.. 1990. Co-C homolysis and bond dissociation energy studies of biological alkylcobalamins: methylcobalamin, including a ≥1015 Co-CH3 homolysis rate enhancement at 25°C following one-electron reduction.. J Am Chem Soc. 112: 2419–2420
  • Matthews R. G.. 2001. Cobalamin-dependent methyltransferases.. Acc Chem Res. 34(8)681–689. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Matthews R. G., Goulding C. W.. 1997. Enzyme-catalyzed methyl transfers to thiols: the role of zinc.. Curr Opin Chem Biol. 1(3)332–339. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Maynard E. L., Lindahl P. A.. 1999. Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum.. J Am Chem Soc. 121: 9221–9222
  • Maynard E. L., Lindahl P. A.. 2001. Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme.. Biochemistry. 40(44)13262–13267. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Maynard E. L., Sewell C., Lindahl P. A.. 2001. Kinetic mechanism of acetyl-CoA synthase: steady-state synthesis at variable CO/CO2 pressures.. J Am Chem Soc. 123(20)4697–4703. [PUBMED], [INFOTRIEVE]
  • Menendez C., Bauer Z., Huber H., Gad'on N., Stetter K. O., Fuchs G.. 1999. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation.. J Bacteriol. 181(4)1088–1098. [PUBMED], [INFOTRIEVE]
  • Menon S., Ragsdale S. W.. 1996a. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis.. Biochemistry. 35(37)12119–12125. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Menon S., Ragsdale S. W.. 1996b. Unleashing hydrogenase activity in pyruvate: ferredoxin oxidoreductase and acetyl-CoA synthase/CO dehydrogenase.. Biochemistry. 35(49)15814–15821. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Menon S., Ragsdale S. W.. 1997. Mechanism of the Clostridium thermoaceticum pyruvate: ferredoxin oxidoreductase: evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyropyrosphate radical.. Biochemistry. 36: 8484–8494. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Menon S., Ragsdale S. W.. 1998. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetyl-CoA synthesis.. Biochemistry. 37(16)5689–5698. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Menon S., Ragsdale S. W.. 1999. The role of an iron-sulfur cluster in an enzymatic methylation reaction: methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein.. J Biol Chem. 274(17)11513–11518. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Meuer J., Kuettner H. C., Zhang J. K., Hedderich R., Metcalf W. W.. 2002. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation.. Proc Natl Acad Sci USA. 99(8)5632–5637. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Meyer O., Frunzke K., Gadkari D., Jacobitz S., Hugendieck I., Kraut M.. 1990. Utilization of carbon monoxide by aerobes: recent advances.. FEMS Microbiol Rev. 87: 253–260
  • Meyer O., Frunzke K., Mörsdorf G.. 1993. Biochemistry of the aerobic utilization of carbon monoxide, In. Microbial growth on C1 compounds. pp. 433–459, J. C., Murrell, D. P., Kelly. Intercept, Ltd., Andover, MA
  • Meyer O., Jacobitz S., Kruger B.. 1986. Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria.. FEMS Microbiol Rev. 39: 161–179
  • Meyer O., Rhode M.. 1984. Enzymology and bioenergetics of carbon monoxide-oxidizing bacteria, In. Microbial growth on C1 compounds. pp. 26–33, R. L., Crawford, R. S., Hanson. American Society for Microbiology, Washington, DC
  • Meyer O., Schlegel H. G.. 1983. Biology of aerobic carbon monoxide-oxidizing bacteria.. Ann Rev Microbiol. 37: 277–310
  • Montet Y., Amara P., Volbeda A., Vernede X., Hatchikian E. C., Field M. J., Frey M., Fontecilla-Camps J. C.. 1997. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics [letter].. Nat Struct Biol. 4(7)523–526. [PUBMED], [INFOTRIEVE]
  • Moore M. R., O'Brien W. E., Ljungdahl L. G.. 1974. Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum.. J Biol Chem. 249: 5250–5253. [PUBMED], [INFOTRIEVE]
  • Morita T., Perrella M. A., Lee M. E., Kourembanas S.. 1995. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP.. Proc Natl Acad Sci USA. 92(5)1475–1479. [PUBMED], [INFOTRIEVE]
  • Nicolet Y., Lemon B. J., Fontecilla-Camps J. C., Peters J. W.. 2000. A novel FeS cluster in Fe-only hydrogenases.. Trends Biochem Sci. 25(3)138–143. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • O'Brien W. E., Brewer J. M., Ljungdahl L. G.. 1973. Purification and characterization of thermostable 5,10- methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum.. J Biol Chem. 248: 403–408. [PUBMED], [INFOTRIEVE]
  • Otting G., Liepinsh E., Halle B., Frey U.. 1997. NMR identification of hydrophobic cavities with low water occupancies in protein structures using small gas molecules.. Nat Struct Biol. 4(5)396–404. [PUBMED], [INFOTRIEVE]
  • Page C. C., Moser C. C., Chen X. X., Dutton P. L.. 1999. Natural engineering principles of electron tunnelling in biological oxidation-reduction.. Nature. 402(6757)47–52. [PUBMED], [INFOTRIEVE]
  • Park E. Y., Clark J. E., DerVartanian D. V., Ljungdahl L. G.. 1991. 5,10-methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia, In. Chemistry Biochemstry Flavoenzymes. Vol. 1: pp. 389–400, F., Miller. CRC Press, Boca Raton, FL
  • Pearson D. M., Oreilly C., Colby J., Black G. W.. 1994. DNA sequence of the cut A, B and C genes, encoding the molybdenum containing hydroxylase carbon monoxide dehydrogenase, from Pseudomonas thermocarboxydovorans strain C2.. Bba-Bioenergetics. 1188(3)432–438. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Peters J. W., Lanzilotta W. N., Lemon B. J., Seefeldt L. C.. 1998. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution.. Science. 282(5395)1853–1858. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Pezacka E., Wood H. G.. 1984. Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria.. Proc Natl Acad Sci USA. 81: 6261–6265. [PUBMED], [INFOTRIEVE]
  • Pieulle L., Charon M. H., Bianco P., Bonicel J., Petillot Y., Hatchikian E. C.. 1999. Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus.. Eur J Biochem. 264(2)500–508. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W.. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation.. CRC Crit Rev Biochem Mol Biol. 26: 261–300
  • Ragsdale S. W.. 2003a. Anaerobic one-carbon catalysis, In. Encyclopedia of catalysis. Vol. 1: pp. 665–695, I. T., Horvath, E., Iglesia, M. T., Klein, J. A., Lercher, A. J., Russell, E. I., Stiefel. John Wiley and Sons, Inc., New York
  • Ragsdale S. W.. 2003b. Pyruvate: ferredoxin oxidoreductase and its radical intermediate.. Chemical Reviews. 103(6)2333–2346. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Clark J. E., Ljungdahl L. G., Lundie L. L., Drake H. L.. 1983a. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum a nickel, iron-sulfur protein.. J Biol Chem. 258: 2364–2369. [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Kumar M.. 1996. Ni containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev. 96(Nov, No. 7)2515–2539. [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Lindahl P. A., Münck E.. 1987. Mössbauer, EPR, and optical studies of the corrinoid/Fe-S protein involved in the synthesis of acetyl-CoA by Clostridium thermoaceticum.. J Biol Chem. 262: 14289–14297. [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Ljungdahl L. G.. 1984a. Hydrogenase from Acetobacterium woodii.. Arch Microbiol. 139: 361–365. [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Ljungdahl L. G.. 1984b. Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Acetobacterium woodii.. J Biol Chem. 259: 3499–3503. [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Ljungdahl L. G., DerVartanian D. V.. 1983b. 13C and 61Ni isotope substitution confirm the presence of a nickel(III)-carbon species in acetogenic CO dehydrogenases.. Biochem Biophys Res Commun. 115(2)658–665. [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Wood H. G.. 1985. Acetate biosynthesis by acetogenic bacteria: evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis.. J Biol Chem. 260: 3970–3977. [PUBMED], [INFOTRIEVE]
  • Ragsdale S. W., Wood H. G., Antholine W. E.. 1985. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum.. Proc Natl Acad Sci USA. 82: 6811–6814. [PUBMED], [INFOTRIEVE]
  • Ram M. S., Riordan C. G.. 1995. Methyl transfer from a cobalt complex to Ni(tmc)(+) yielding Ni(tmc)Me(+): a model for methylcobalamin alkylation of CO dehydrogenase.. J Am Chem Soc. 117(8)2365–2366
  • Ram M. S., Riordan C. G., Yap G. P.A., Liable-Sands L., Rheingold A. L., Marchaj A., Norton J. R.. 1997. Kinetics and mechanism of alkyl transfer from organocobalt(III) to nickel(I): implications for the synthesis of acetyl coenzyme A by CO dehydrogenase.. J Am Chem Soc. 119(7)1648–1655
  • Rees D. C.. 2002. Great metalloclusters in enzymology.. Annu Rev Biochem. 71: 221–246. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Roberts D. L., James-Hagstrom J. E., Smith D. K., Gorst C. M., Runquist J. A., Baur J. R., Haase F. C., Ragsdale S. W.. 1989. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Proc Natl Acad Sci USA. 86: 32–36. [PUBMED], [INFOTRIEVE]
  • Roberts D. L., Zhao S., Doukov T., Ragsdale S. W.. 1994. The reductive acetyl-CoA pathway: sequence and heterologous expression of active CH3-H4 folate: corrinoid/iron sulfur protein methyltransferase from Clostridium themoaceticum.. J Bacteriol. 176: 6127–6130. [PUBMED], [INFOTRIEVE]
  • Russell M. J., Daia D. E., Hall A. J.. 1998b. The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean, In. Thermophiles: the keys to molecular evolution and the origin of life?. pp. 77–126, M. W.W., Adams, L. G., Ljungdahl, J., Wiegel. Taylor and Francis, Washington, DC
  • Russell M. J., Hall A. J.. 1997. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front.. J Geol Soc London. 154: 337–402
  • Russell W. K., Stalhandske C. M.V., Xia J. Q., Scott R. A., Lindahl P. A.. 1998. Spectroscopic, redox, and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active. Site of carbon monoxide dehydrogenase.. J Am Chem Soc. 120(30)7502–7510
  • Santiago B., Meyer O.. 1996. Characterization of hydrogenase activities associated with the molybdenum CO dehydrogenase from Oligotropha carboxidovorans.. FEMS Microbiol Lett. 136(2)157–162
  • Schenker R. P., Brunold T. C.. 2003. Computational studies on the A cluster of acetyl-coenzyme A synthase: geometric and electronic properties of the NiFeC species and mechanistic implications.. J Am Chem Soc. 125(46)13962–13963. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Schidlowski M., Hayes J. M., Kaplan I. R.. 1983, In. Earth's earliest biosphere: its origin and evolution. pp. 149–186, J. W., Schopf. Princeton Univ. Press, Princeton, NJ
  • Schiltz M., Fourme R., Prange T.. 2003. Use of noble gases xenon and krypton as heavy atoms in protein structure determination.. Methods Enzymol. 374: 83–119. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Schubel U., Kraut M., Mörsdorf G., Meyer O.. 1995. Molecular characterization of the gene cluster coxMSL encoding the molybdenum-containing carbon monoxide dehydrogenase of Oligotropha carboxidovorans.. J Bacteriol. 177(8)2197–2203. [PUBMED], [INFOTRIEVE]
  • Seravalli J., Gu W., Tam A., Strauss E., Begley T. P., Cramer S. P., Ragsdale S. W.. 2003. Functional copper at the acetyl-CoA synthase active site.. Proc Natl Acad Sci USA. 100: 3689–3694. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Seravalli J., Kumar M., Lu W.-P., Ragsdale S. W.. 1997. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates.. Biochemistry. 36: 11241–11251. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Seravalli J., Kumar M., Ragsdale S. W.. 2002. Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the autotrophic Wood-Ljungdahl pathway.. Biochemistry. 41(6)1807–1819. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Seravalli J., Ragsdale S. W.. 2000. Channeling of carbon monoxide during anaerobic carbon dioxide fixation.. Biochemistry. 39(6)1274–1277. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Seravalli J., Xiao Y., Gu W., Cramer S. P., Antholine W. E., Krymov V., Gerfen G. J., Ragsdale S. W.. 2004. Evidence that Ni-Ni acetyl-CoA synthase is active and that the Cu-Ni enzyme is not.. Biochemistry. 43(13)3944–3955. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Seravalli J., Zhao S., Ragsdale S. W.. 1999. Mechanism of transfer of the methyl group from (6S)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein catalyzed by the methyltransferase from Clostridium thermoaceticum: a key step in the Wood-Ljungdahl pathway of acetyl-CoA synthesis.. Biochemistry. 38(18)5728–5735. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Shanmugasundaram T., Kumar G. K., Wood H. G.. 1988. Involvement of tryptophan residues at the coenzyme A binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum.. Biochemistry. 27: 6499–6503. [PUBMED], [INFOTRIEVE]
  • Shanmugasundaram T., Sundaresh C. S., Kumar G. K.. 1993. Identification of a cysteine involved in the interaction between carbon monoxide dehydrogenase and corrinoid/Fe-S protein from Clostridium thermoaceticum. FEBS Lett. 326(July)281–284. [PUBMED], [INFOTRIEVE]
  • Shanmugasundaram T., Wood H. G.. 1992. Interaction of ferredoxin with carbon monoxide dehydrogenase from Clostridium thermoaceticum. J Biol Chem. 267(Jan. 15)897–900. [PUBMED], [INFOTRIEVE]
  • Shelver D., Kerby R. L., He Y. P., Roberts G. P.. 1995. Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol. 177(8)2157–2163. [PUBMED], [INFOTRIEVE]
  • Shelver D., Kerby R. L., He Y. P., Roberts G. P.. 1997. CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein.. Proc Natl Acad Sci USA. 94(21)11216–11220. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Shin W., Anderson M. E., Lindahl P. A.. 1993. Heterogeneous nickel environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum.. J Am Chem Soc. 115: 5522–5526
  • Shin W., Lindahl P. A.. 1992. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum.. Biochemistry. 31: 12870–12875. [PUBMED], [INFOTRIEVE]
  • Song H. K., Mulrooney S. B., Huber R., Hausinger R. P.. 2001. Crystal structure of Klebsiella aerogenes UreE, a nickel-binding metallochaperone for urease activation.. J Biol Chem. 276(52)49359–49364. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Soupene E., Chu T., Corbin R. W., Hunt D. F., Kustu S.. 2002a. Gas channels for NH(3): proteins from hyperthermophiles complement an Escherichia coli mutant.. J Bacteriol. 184(12)3396–3400. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Soupene E., King N., Feild E., Liu P., Niyogi K. K., Huang C. H., Kustu S.. 2002b. Rhesus expression in a green alga is regulated by CO(2).. Proc Natl Acad Sci USA. 99(11)7769–7773. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Sun A. Y., Ljungdahl L., Wood H. G.. 1969. Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum.. J Bacteriol. 98(2)842–844. [PUBMED], [INFOTRIEVE]
  • Svetlichny V. A., Sokolova T. G., Gerhardt M., Ringpfeil M., Kostrikina N. A., Zavarzin G. A.. 1991. Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir island.. Syst Appl Microbiol. 14: 254–260
  • Svetlitchnyi V., Dobbek H., Meyer-Klaucke W., Meins T., Thiele B., Romer P., Huber R., Meyer O.. 2004. A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans.. Proc Natl Acad Sci USA. 101(2)446–451. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Svetlitchnyi V., Peschel C., Acker G., Meyer O.. 2001. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans.. J Bacteriol. 183(17)5134–5144. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Tan G. O., Ensign S. A., Ciurli S., Scott M. J., Hedman B., Holm R. H., Ludden P. W., Korszun Z. R., Stephens P. J., Hodgson K. O.. 1992. On the structure of the nickel/iron/sulfur center of the carbon monoxide dehydrogenase from Rhodospirillum rubrum: An x-ray absorption spectroscopy study.. Proc Natl Acad Sci USA. 89: 4427–4431. [PUBMED], [INFOTRIEVE]
  • Tan X., Sewell C., Yang Q., Lindahl P. A.. 2003. Reduction and methyl transfer kinetics of the alpha subunit from acetyl coenzyme A synthase.. J Am Chem Soc. 125(2)318–319. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Tan X. S., Sewell C., Lindahl P. A.. 2002. Stopped-flow kinetics of methyl group transfer between the corrinoid-iron-sulfur protein and acetyl-coenzyme A synthase from Clostridium thermoaceticum.. J Am Chem Soc. 124(22)6277–6284. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Tenhunen R., Marver H. S., Schmid R.. 1969. Microsomal heme oxygenase. Characterization of the enzyme.. J Biol Chem. 244(23)6388–6394. [PUBMED], [INFOTRIEVE]
  • Tersteegen A., Linder D., Thauer R. K., Hedderich R.. 1997. Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum.. Eur J Biochem. 244(3)862–868. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Thauer R. K.. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson.. Microbiol UK. 144: 2377–2406
  • Uffen R. L.. 1983. Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidative system.. J Bacteriol. 155: 956–965. [PUBMED], [INFOTRIEVE]
  • Uyeda K., Rabinowitz J. C.. 1971. Pyruvate-ferredoxin oxidoreductase. 3. Purification and properties of the enzyme.. J Biol Chem. 246(10)3111–3119. [PUBMED], [INFOTRIEVE]
  • Verma A., Hirsch D. J., Glatt C. E., Ronnett G. V., Snyder S. H.. 1993. Carbon monoxide: a putative neural messenger.. Science. 259: 381–384. [PUBMED], [INFOTRIEVE]
  • Vobeda A., Fontecilla-Camps J. C.. 2004. Crystallographic evidence for a CO/CO2 tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/ acetyl Coenzyme A synthase from Moorella thermoacetica. J Biol Inorg Chem, in press.
  • Wahl R. C., Orme-Johnson W. H.. 1987. Clostridial pyruvate oxidoreductase and the pyruvate oxidizing enzyme specific to nitrogen fixation in Klebsiella pneumoniae are similar enzymes.. J Biol Chem. 262: 10489–10496. [PUBMED], [INFOTRIEVE]
  • Warthen C. R., Hammes B. S., Carrano C. J., Crans D. C.. 2001. Methylation of neutral pseudotetrahedral zinc thiolate complexes: model reactions for alkyl group transfer to sulfur by zinc-containing enzymes.. J Biol Inorg Chem. 6(1)82–90. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Watt R. K., Ludden P. W.. 1998. The identification, purification, and characterization of CooJ. A nickel-binding protein that is co-regulated with the Ni-containing CO dehydrogenase from Rhodospirillum rubrum.. J Biol Chem. 273(16)10019–10025. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Watt R. K., Ludden P. W.. 1999. Nickel-binding proteins. Cell Mol Life Sci. 56(7–8)604–625
  • Webster C. E., Darensbourg M. Y., Lindahl P. A., Hall M. B.. 2004. Structures and energetics of models for the active site of acetyl-coenzyme a synthase: role of distal and proximal metals in catalysis.. J Am Chem Soc. 126(11)3410–3411. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Wirt M. D., Kumar M., Ragsdale S. W., Chance M. R.. 1993. X-ray absorption spectroscopy of the corrinoid/iron sulfur protein involved in acetyl-CoA synthesis by Clostridium thermoaceticum.. J Am Chem Soc. 115: 2146–2150
  • Wirt M. D., Wu J.-J., Scheuring E. M., Kumar M., Ragsdale S. W., Chance M. R.. 1995. Structural and electronic factors in heterolytic cleavage: formation of the Co(I) intermediate in the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. Biochemistry. 34(15)5269–5273. [PUBMED], [INFOTRIEVE]
  • Wolin M. J., Miller T. L.. 1994. Acetogenesis from CO2 in the human colonic ecosystem, In. Acetogenesis. pp. 365–385, H. L., Drake. Chapman and Hall, New York
  • Xia J., Sinclair J. F., Baldwin T. O., Lindahl P. A.. 1996. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: quaternary structure, stoichiometry of its SDS-induced dissociation, and characterization of the faster-migrating form.. Biochemistry. 35(6)1965–1971. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Yagi T.. 1959. Enzymic oxidation of carbon monoxide.. Biochim Biophys Acta. 30: 194–195
  • Yamamoto K., Ishikawa H., Takahashi S., Ishimori K., Morishima I., Nakajima H., Aono S.. 2001. Binding of CO at the Pro2 side is crucial for the activation of CO-sensing transcriptional activator CooA. 1H NMR spectroscopic studies.. J Biol Chem. 276: 11473–11476. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Youn H., Kerby R. L., Conrad M., Roberts G. P.. 2004. Functionally critical elements of CooA-related CO sensors.. J Bacteriol. 186(5)1320–1329. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Zhao S., Roberts D. L., Ragsdale S. W.. 1995. Mechanistic studies of the methyltransferase from Clostridium thermoaceticum: origin of the pH dependence of the methyl group transfer from methyltetrahydrofolate to the corrinoid/iron-sulfur protein.. Biochemistry. 34: 15075–15083. [PUBMED], [INFOTRIEVE]
  • Zhao S. Y., Ragsdale S. W.. 1996. A conformational change in the methyltransferase from Clostridium thermoaceticum facilitates the methyl transfer from (6S)-methyltetrahydrofolate to the corrinoid iron- sulfur protein in the sacetyl-CoA pathway.. Biochemistry. 35(7)2476–2481. [CROSSREF], [PUBMED], [INFOTRIEVE]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.