475
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Adaptive Amplification

Pages 271-283 | Published online: 10 Oct 2008

REFERENCES

  • Aharoni A., Gaidukov L., Khersonsky O., McQ Gould S., Roodveldt C., Tawfik D. S. The ‘evolvability’ of promiscuous protein functions. Nat Genet 2005; 37: 73–76
  • Albertson D. G. Gene amplification in cancer. Trends in Genetics 2006; 22: 447–455
  • Anderson R. P., Roth J. R. Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol 1977; 31: 473–505
  • Bowater R., Doherty A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2006; 2: e8
  • Burma S., Chen B. P., Chen D. J. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst) 2006; 5: 1042–1048
  • Butler D. K., Yasuda L. E., Yao M. C. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell 1996; 87: 1115–1122
  • Bzymek M., Lovett S. T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA 2001; 98: 8319–8325
  • Cairns J., Foster P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 1991; 128: 695–701
  • Calvi B. R., Spradling A. C. Chorion gene amplification in Drosophila: A model for metazoan origins of DNA replication and S-phase control. Methods 1999; 18: 407–417
  • Carginale V., Trinchella F., Capasso C., Scudiero R., Parisi E. Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature. Gene 2004; 336: 195–205
  • Cowell J. K. Double minutes and homogenously staining regions: gene amplification in mammalian cells. Annu Rev Genet 1982; 16: 21–59
  • Cox M. M., Goodman M. F., Kreuzer K. N., Sherratt D. J., Sandler S. J., Marians K. J. The importance of repairing stalled replication forks. Nature 2000; 404: 37–41
  • Dunham M. J., Badrane H., Ferea T., Adams J., Brown P. O., Rosenzweig F., Botstein D. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2002; 99: 16144–16149
  • Edlund T., Normark S. Recombination between short DNA homologies causes tandem duplication. Nature 1981; 292: 269–271
  • Feuk L., Carson A. R., W. S. S. Structural variation in the human genome. Nat Rev Genetics 2006; 7: 85–97
  • Fogel S., Welch J. W. Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci USA 1982; 79: 5342–5346
  • Foster P. L. Population dynamics of a Lac− strain of Escherichia coli during selection for lactose utilization. Genetics 1994; 138: 253–261
  • Foster P. L., Trimarchi J. M., Maurer R. A. Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli. Genetics 1996; 142: 25–37
  • Francino M. P. An adaptive radiation model for the origin of new gene functions. Nat Genet 2005; 37: 573–577
  • Galitski T., Roth J. R. Pathways for homologous recombination between direct repeats in Salmonella typhimurium. Genetics 1997; 146: 751–767
  • Gijzen M., Kuflu K., Moy P. Gene amplification of the Hps locus in Glycine max. BMC Plant Biol 2006; 6: 6
  • Godoy V. G., Gizatullin F. S., Fox M. S. Some features of the mutability of bacteria during nonlethal selection. Genetics 2000; 154: 49–59
  • Graham G. J. Tandem genes and clustered genes. J Theor Biol 1995; 175: 71–87
  • Graubert T. A., Cahan P., Edwin D., Selzer R. R., Richmond T. A., Eis P. S., Shannon W. D., Li X., McLeod H. L., Cheverud J. M., Ley T. J. A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genetics 2007; 3: e3
  • Haber J. E., Debatisse M. Gene amplification: yeast takes a turn. Cell 2006; 125: 1237–1240
  • Harris R. S., Longerich S., Rosenberg S. M. Recombination in adaptive mutation. Science 1994; 264: 258–260
  • Harris R. S., Ross K. J., Rosenberg S. M. Opposing roles of the Holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation. Genetics 1996; 142: 681–691
  • Hastings P. J., Bull H. J., Klump J. R., Rosenberg S. M. Adaptive amplification: an inducible chromosomal instability mechanism. Cell 2000; 103: 723–731
  • Hastings P. J., Rosenberg S. M., Slack A. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol 2004a; 12: 401–404
  • Hastings P. J., Slack A., Petrosino J. F., Rosenberg S. M. Adaptive amplification and point mutation are independent mechanisms: Evidence for various stress-inducible mutation mechanisms. PLoS Biol 2004b; 2: e399
  • Hendrickson H., Slechta E. S., Bergthorsson U., Andersson D. I., Roth J. R. Amplification-mutagenesis: evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci USA 2002; 99: 2164–2169
  • Hengge-Aronis R. The general stress response in Escherichia coli. The general stress response in Escherichia coli, G Stortz, R Hengge-Aronis. ASM Press, D.C., Washington 2000
  • Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002; 66: 373–395
  • Hollox E. J., Armour J. A., Barber J. C. Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 2003; 73: 591–600
  • Huang T., Campbell J. L. Amplification of a circular episome carrying an inverted repeat of the DFR1 locus and adjacent autonomously replicating sequence element of Saccharomyces cerevisiae. J Biol Chem 1995; 270: 9607–9614
  • Inoue K., Osaka H., Thurston V. C., Clarke J. T., Yoneyama A., Rosenbarker L., Bird T. D., Hodes M. E., Shaffer L. G., Lupski J. R. Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am J Hum Genet 2002; 71: 838–853
  • Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 1997; 61: 212–238
  • Komarova N. L., Lengauer C., Vogelstein B., Nowak M. A. Dynamics of genetic instability in sporadic and familial colorectal cancer. Cancer Biol Ther 2002; 1: 685–692
  • Kugelberg E., Kofoid E., Reams A B, Andersson D. I., Roth J. R. Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci USA 2006; 103: 17319–17324
  • Lacour S., Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 2004; 186: 7186–7195
  • Layton J. C., Foster P. L. Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli. Mol Microbiol 2003; 50: 549–561
  • Lee J. A. Molecular analysis of the non-recurrent genomic duplications causing Pelizaeus-Merzbacher disease and its allelic disorder paraplegia type 2. Baylor College of Medicine. Houston 2006
  • Lehner A. F., Hill C. W. Involvement of ribosomal ribonucleic acid operons in Salmonella typhimurium chromosomal rearrangements. J Bacteriol 1980; 143: 492–498
  • Lengauer C., Kinzler K. W., Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–649
  • Lin R. J., Capage M., Hill C. W. A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. J Mol Biol 1984; 177: 1–18
  • Lombardo M.-J., Aponyi I., Rosenberg S. M. General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 2004; 166: 669–680
  • Lovett S. T., Drapkin P. T., Sutera V. A., Jr., Gluckman-Peskind T. J. A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics 1993; 135: 631–642
  • Lovett S. T., Gluckman T. J., Simon P. J., Sutera V. A., Jr., Drapkin P. T. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 1994; 254: 294–300
  • Lupski J. R., Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 2005; 1: e49
  • Mahan M., Roth J. R. Role of recBC function in formation of chromosomal rearrangements: A two-step model for recombination. Genetics 1989; 121: 433–443
  • Masai H., Arai K. Mechanisms of primer RNA synthesis and D-loop/R-loop-dependent DNA replication in Escherichia coli. Biochimie 1996; 78: 1109–1117
  • Matfield M., Badawi R., Brammar W. J. Rec-dependent and Rec-independent recombination of plasmid-borne duplications in Escherichia coli K12. Mol Gen Genet 1985; 199: 518–523
  • Mazin A. V., Kuzminov A. V., Dianov G. L., Salganik R. I. Mechanisms of deletion formation in Escherichia coli plasmids. II. Deletions mediated by short direct repeats. Mol Gen Genet 1991; 228: 209–214
  • McClintock B. The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci USA 1942; 28: 458–463
  • McKenzie G. J., Lombardo M.-J., Rosenberg S. M. Recombination-dependent mutation in Escherichia coli occurs in stationary phase. Genetics 1998; 149: 1563–1565
  • Meddows T. R., Savory A. P., Lloyd R. G. RecG helicase promotes DNA double-strand break repair. Mol Microbiol 2004; 52: 119–132
  • Mekalanos J. J. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 1983; 35: 353–363
  • Michor F. Chromosomal instability and human cancer. Philos Trans R Soc Lond B Biol Sci 2005; 360: 631–635
  • Moran N. A., Baumann P. Bacterial endosymbionts in animals. Curr Opin Microbiol 2000; 3: 270–275
  • Narayanan V., Mieczkowski P. A., Kim H. M., Petes T. D., Lobachev K. S. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 2006; 125: 1283–1296
  • Ohno S. Evolution by gene duplication, , et al. Springer-Verlag, New York 1970
  • Orr-Weaver T. L. Drosophila chorion genes: cracking the eggshell's secrets. Bioessays 1991; 13: 97–105
  • Palmiter R. D. Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci USA 2004; 101: 4918–4923
  • Pennington J. M., Rosenberg S. M. Spontaneous DNA breakage in single living cells of Escherichia coli. Nature Genetics 2007; 39: 792–802
  • Perlman D., Stickgold R. Selective amplification of genes on the R plasmid, NR1, in Proteus mirabilis: an example of the induction of selective gene amplification. Proc Natl Acad Sci USA 1977; 74: 2518–2522
  • Petit M.-A., Mesas J. M., Morel-Deville F., Ehrlich S. D. Induction of DNA amplification in the Bacillus subtilis chromosome. EMBO J 1992; 11: 1317–1326
  • Pipiras E., Coquelle A., Bieth A., Debatisse M. Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 1998; 17: 325–333
  • Ponder R. G., Fonville N. C., Rosenberg S. M. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 2005; 19: 791–804
  • Powell S. C., Wartell R. M. Different characteristics distinguish early versus late arising adaptive mutations in Escherichia coli FC40. Mutat Res 2001; 473: 219–228
  • Rajagopalan H., Nowak M. A., Vogelstein B., Lengauer C. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 2003; 3: 695–701
  • Raymond M., Berticat C., Weill M., Pasteur N., Chevillon C. Insecticide resistance in the mosquito culex pipiens: what have we learned about adaptation?. Genetica 2001; 112–113: 287–296
  • Raymond M., Chevillon C., Guillemaud T., Lenormand T., Pasteur N. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos Trans R Soc Lond B Biol Sci 1998; 353: 1707–1711
  • Reams A. B., Neidle E. L. Gene amplification involves site-specific short homology-independent illegitimate recombination in Acinetobacter sp. strain ADP1. J Mol Biol 2004a; 338: 643–656
  • Reams A. B., Neidle E. L. Selection for gene clustering by tandem duplication. Annu Rev Microbiol 2004b; 58: 119–142
  • Riehle M. M., Bennett A. F., Long A. D. Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 2001; 98: 525–530
  • Romero D., Palacios R. Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 1997; 31: 91–111
  • Rosche W. A., Foster P. L. The role of transient hypermutators in adaptive mutation in Escherichia coli. Proc Natl Acad Sci USA 1999; 96: 6862–6867
  • Roth J. R., Benson N., Galitski T., Haack K., Lawrence J. G., Meisel L. Rearrangements of the bacterial chromosome: formation and applications. Escherichia coli and Salmonella cellular and molecular biology, F. C. Neidhardt, R Curtiss, J. L. Ingraham, ECC Lin, K. B. Low, B Magasanik, W. S. Reznikoff, M Riley, M Schaechter, H. E. Umbarger. ASM Press, D.C., Washington 1996; 2256–2276
  • Roth J. R., Kugelberg E., Reams A. B., Kofoid E., Andersson D. I. Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 2006; 60: 477–501
  • Segall A. M., Roth J. R. Approaches to half-tetrad analysis in bacteria: recombination between repeated, inverse-order chromosomal sequences. Genetics 1994; 136: 27–39
  • Sharp A. J., Locke D. P., McGrath S. D., Cheng Z., Bailey J. A., Vallente R. U., Pertz L. M., Clark R. A., Schwartz S., Segraves R., Oseroff V. V., Albertson D. G., Pinkel D., Eichler E. E. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 2005; 77: 78–88
  • Shyamala V., Schneider E., Ames G. F. Tandem chromosomal duplications: role of REP sequences in the recombination event at the join-point. EMBO J 1990; 9: 939–946
  • Slack A., Thornton P. C., Magner D. B., Rosenberg S. M., Hastings P. J. On the mechanism of gene amplification induced under stress in Escherichia coli. PLoS Genetics 2006; 2: e48
  • Sonti R. V., Roth J. R. Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 1989; 123: 19–28
  • Spradling A. C., Mahowald A. P. Amplification of genes for chorion proteins during oogenesis in Drosophila melanogaster. Proc Natl Acad Sci USA 1980; 77: 1096–1100
  • Stumpf J. D., Poteete A. R., Foster P. L. Amplification of lac cannot account for adaptive mutation to Lac+ in Escherichia coli. J Bacteriol 2007; 189: 2291–2299
  • Tlsty T. D., Albertini A. M., Miller J. H. Gene amplification in the lac region of E. coli. Cell 1984; 37: 217–224
  • Tlsty T. D., Margolin B. H., Lum K. Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbrück fluctuation analysis. Proc Natl Acad Sci USA 1989; 86: 9441–9445
  • Torkelson J., Harris R. S., Lombardo M.-J., Nagendran J., Thulin C., Rosenberg S. M. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J 1997; 16: 3303–3311
  • Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187: 1591–1603
  • Whoriskey S. K., Nghiem V.-H., Leong P.-M., Masson J.-M., Miller J. H. Genetic rearrangement and gene amplification in Escherichia coli: DNA sequences at the junctures of amplified gene fusions. Genes Dev 1987; 1: 227–237
  • Widholm J. M., Chinnala A. R., Ryu J. H., Song H. S., Eggett T., Brotherton J. E. Glyphosate selection of gene amplification in suspension cultures of 3 plant species. Physiol Plant 2001; 112: 540–545
  • Wu D. G., Black L. W. Gene amplification mechanism for the hyperproduction of T4 bacteriophage gene 17 and 18 proteins. J Mol Biol 1987; 195: 769–783
  • Young M., Cullum J. A plausible mechanism for large-scale chromosomal DNA amplification in streptomycetes. FEBS Lett 1987; 212: 10–14
  • Zusman T., Rosenshine I., Boehm G., Jaenicke R., Leskiw B., Mevarech M. Dihydrofolate reductase of the extremely halophilic archaebacterium Halobacterium volcanii. The enzyme and its coding gene. J Biol Chem 1989; 264: 18878–18883

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.