743
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Adaptive Mutation in Saccharomyces cerevisiae

Pages 285-311 | Published online: 10 Oct 2008

REFERENCES

  • Allen C., Buttner S, Aragon A. D., Thomas J. A., Meirelles O., Jaetao J. E., Benn D., Ruby S. W., Veenhuis M., Madeo F., et al. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol. 2006; 174: 89–100
  • Babudri N., Pavlov Y. I., Matmati N., Ludovisi C., Achilli A. Stationary-phase mutations in proofreading exonuclease-deficient strains of the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2001; 265: 362–366
  • Baranowska H., Policinska Z., Jachymczyk W. J. Effects of the CDC2 gene on adaptive mutation in the yeast Saccharomyces cerevisiae. Curr Genet 1995; 28: 521–525
  • Barnes D. E. DNA Damage: Air-breaks?. Curr Biol 2002; 12: R262–264
  • Bjedov I., Tenaillon O., Gerard B., Souza V., Denamur E., Radman M., Taddei F., Matic I. Stress-induced mutagenesis in bacteria. Science 2003; 300: 1404–1409
  • Bowater R., Doherty A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2006; 2: e8
  • Broomfield S., Hryciw T., Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 2001; 486: 167–184
  • Burgers P. M. Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma 1998; 107: 218–227
  • Burgers P. M., Koonin E. V., Bruford E., Blanco L., Burtis K. C., Christman M. F., Copeland W. C., Friedberg E. C., Hanaoka F., Hinkle D. C., et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 2001; 276: 43487–43490
  • Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature 1988; 335: 142–145
  • Cariello N. F., Piegorsch W. W., Adams W. T., Skopek T. R. Computer program for the analysis of mutational spectra: application to p53 mutations. Carcinogenesis 1994; 15: 2281–2285
  • Casali P., Pal Z., Xu Z., Zan H. DNA repair in antibody somatic hypermutation. Trends Immunol 2006; 27: 313–321
  • Cejka P., Vondrejs V., Storchova Z. Dissection of the functions of the Saccharomyces cerevisiae RAD6 postreplicative repair group in mutagenesis and UV sensitivity. Genetics 2001; 159: 953–963
  • Chicurel M. Can organisms speed their own evolution?. Science 2001; 292: 1824–1827
  • Daley J. M., Palmbos P. L., Wu D., Wilson T. E. Nonhomologous end joining in yeast. Annu Rev Genet 2005; 39: 431–451
  • Datta A., Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 1995; 268: 1616–1619
  • de Laat W. L., Jaspers N. G., Hoeijmakers J. H. Molecular mechanism of nucleotide excision repair. Genes Dev 1999; 13: 768–785
  • Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics 1998; 148: 1667–1686
  • Eisler H., Frohlich K. U., Heidenreich E. Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast. Exp Cell Res 2004; 300: 345–353
  • Flores-Rozas H., Kolodner R. D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci USA 1998; 95: 12404–12409
  • Foster P. L. Adaptive mutation: the uses of adversity. Annu Rev Microbiol 1993; 47: 467–504
  • Foster P. L. Nonadaptive mutations occur on the F’ episome during adaptive mutation conditions in Escherichia coli. J Bacteriol 1997; 179: 1550–1554
  • Foster P. L. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet 1999; 33: 57–88
  • Foster P. L. Adaptive mutation: implications for evolution. Bioessays 2000; 22: 1067–1074
  • Foster P. L., Trimarchi J. M. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science 1994; 265: 407–409
  • Frank-Vaillant M., Marcand S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev 2001; 15: 3005–3012
  • Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A., Ellenberger T. DNA repair and mutagenesis, 2nd ed, , et al. ASM Press, Washington, D.C. 2005
  • Gibbs J. B., Marshall M. S. The ras oncogene—an important regulatory element in lower eucaryotic organisms. Microbiol Rev 1989; 53: 171–185
  • Giraud A., Radman M., Matic I., Taddei F. The rise and fall of mutator bacteria. Curr Opin Microbiol 2001; 4: 582–585
  • Godoy V. G., Gizatullin F. S., Fox M. S. Some features of the mutability of bacteria during nonlethal selection. Genetics 2000; 154: 49–59
  • Goodman M. F., Tippin B. Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev 2000; 10: 162–168
  • Granot D., Levine A., Dor-Hefetz E. Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 2003; 4: 7–13
  • Granot D., Snyder M. Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1991; 88: 5724–5728
  • Gray J. V., Petsko G. A., Johnston G. C., Ringe D., Singer R. A., Werner-Washburne M. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2004; 68: 187–206
  • Greene C. N., Jinks-Robertson S. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Mol Cell Biol 1997; 17: 2844–2850
  • Greene C. N., Jinks-Robertson S. Comparison of spontaneous and adaptive mutation spectra in yeast. J Genet 1999; 78: 51–55
  • Grigg G. W., Stuckey J. The reversible suppression of stationary phase mutation in Escherichia coli by caffeine. Genetics 1966; 53: 823–834
  • Haber J. E. Partners and pathways repairing a double-strand break. Trends Genet 2000; 16: 259–264
  • Halas A., Baranowska H., Policinska Z. The influence of the mismatch-repair system on stationary-phase mutagenesis in the yeast Saccharomyces cerevisiae. Curr Genet 2002; 42: 140–146
  • Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 1990; 126: 5–16
  • Hall B. G. Selection-induced mutations occur in yeast. Proc Natl Acad Sci USA 1992; 89: 4300–4303
  • Hall B. G. Adaptive mutations in Escherichia coli as a model for the multiple mutational origins of tumors. Proc Natl Acad Sci USA 1995; 92: 5669–5673
  • Hall B. G. Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations. Genetica 1998; 102–103; 109–125
  • Hanahan D., Weinberg R. A. The hallmarks of cancer. Cell 2000; 100: 57–70
  • Haracska L., Unk I., Johnson R. E., Johansson E., Burgers P. M., Prakash S., Prakash L. Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 2001; 15: 945–954
  • Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Hastings P. J., Winkler M. E., Rosenberg S. M. Mismatch repair is diminished during stationary-phase mutation. Mutat Res 1999; 437: 51–60
  • Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev 1997; 11: 2426–2437
  • Harris R. S., Longerich S., Rosenberg S. M. Recombination in adaptive mutation. Science 1994; 264: 258–260
  • Hefferin M. L., Tomkinson A. E. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair 2005; 4: 639–648
  • Heidenreich E., Eisler H. Non-homologous end joining dependency of gamma-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells. Mutat Res 2004; 556: 201–208
  • Heidenreich E., Eisler H., Steinboeck F. Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells. Mutat Res 2006; 593: 187–195
  • Heidenreich E., Holzmann V., Eisler H. Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains. DNA Repair 2004; 3: 395–402
  • Heidenreich E., Novotny R., Kneidinger B., Holzmann V., Wintersberger U. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J 2003; 22: 2274–2283
  • Heidenreich E., Wintersberger U. Starvation for a specific amino acid induces high frequencies of rho− mutants in Saccharomyces cerevisiae. Curr Genet 1997; 31: 408–413
  • Heidenreich E., Wintersberger U. Replication-dependent and selection-induced mutations in respiration-competent and respiration-deficient strains of Saccharomyces cerevisiae. Mol Gen Genet 1998; 260: 395–400
  • Heidenreich E., Wintersberger U. Adaptive reversions of a frameshift mutation in arrested Saccharomyces cerevisiae cells by simple deletions in mononucleotide repeats. Mutat Res 2001; 473: 101–107
  • Herman P. K. Stationary phase in yeast. Curr Opin Microbiol 2002; 5: 602–607
  • Holbeck S. L., Strathern J. N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics 1997; 147: 1017–1024
  • Ilyina V. L., Korogodin V. I., Fajszi C. Dependence of spontaneous reversion frequencies in haploid yeasts of different genotypes on the concentration of adenine in the medium and on the age of the culture. Mutat Res 1986; 174: 189–194
  • Jackson S. P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002; 23: 687–696
  • Jiricny J. Eukaryotic mismatch repair: an update. Mutat Res 1998; 409: 107–121
  • Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006; 7: 335–346
  • Karanjawala Z. E., Lieber M. R. DNA damage and aging. Mech Ageing Dev 2004; 125: 405–416
  • Karran P. Microsatellite instability and DNA mismatch repair in human cancer. Semin Cancer Biol 1996; 7: 15–24
  • Kegel A., Sjostrand J. O., Astrom S. U. Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr Biol 2001; 11: 1611–1617
  • Kitamoto K., Yoshizawa K., Ohsumi Y., Anraku Y. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol 1988; 170: 2683–2686
  • Kolodner R. D., Marsischky G. T. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 1999; 9: 89–96
  • Lawrence C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it?. Bioessays 1994; 16: 253–258
  • Lawrence C. W. Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair 2002; 1: 425–435
  • Lawrence C. W. Cellular functions of DNA polymerase zeta and Rev1 protein. Adv Protein Chem 2004; 69: 167–203
  • Lawrence C. W., Maher V. M. Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Philos Trans R Soc B-Biol Sci 2001; 356: 41–46
  • Lax C., Fogel S., Cramer C. Regulatory mutants at the his1 locus of yeast. Genetics 1979; 92: 363–382
  • Lewis L. K., Resnick M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res 2000; 451: 71–89
  • Lieber M. R., Ma Y., Pannicke U., Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair 2004; 3: 817–826
  • Loeb L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991; 51: 3075–3079
  • Loeb L. A., Loeb K. R., Anderson J. P. Multiple mutations and cancer. Proc Natl Acad Sci USA 2003; 100: 776–781
  • Longerich S., Galloway A. M., Harris R. S., Wong C., Rosenberg S. M. Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc. Natl Acad Sci USA 1995; 92: 12017–12020
  • Luria S. E., Delbrück M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943; 28: 491–511
  • Marini A., Matmati N., Morpurgo G. Starvation in yeast increases non-adaptive mutation. Curr Genet 1999; 35: 77–81
  • Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 1996; 10: 407–420
  • Marti T. M., Kunz C., Fleck O. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 2002; 191: 28–41
  • Martomo S. A., Gearhart P. J. Somatic hypermutation: subverted DNA repair. Curr Opin Immunol 2006; 18: 243–248
  • Matic I., Taddei F., Radman M. Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res Microbiol 2004; 155: 337–341
  • McHugh P. J., Sones W. R., Hartley J. A. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20: 3425–3433
  • Merlo L. M., Pepper J. W., Reid B. J., Maley C. C. Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006; 6: 924–935
  • Minarikova L., Kuthan M., Ricicova M., Forstova J., Palkova Z. Differentiated gene expression in cells within yeast colonies. Exp Cell Res 2001; 271: 296–304
  • Nelson J. R., Lawrence C. W., Hinkle D. C. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 1996a; 382: 729–731
  • Nelson J. R., Lawrence C. W., Hinkle D. C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 1996b; 272: 1646–1649
  • Nowell P. C. The clonal evolution of tumor cell populations. Science 1976; 194: 23–28
  • Oda S., Zhao Y., Maehara Y. Microsatellite instability in gastrointestinal tract cancers: a brief update. Surg Today 2005; 35: 1005–1015
  • Palkova Z., Vachova L. Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev 2006; 30: 806–824
  • Paques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63: 349–404
  • Pastink A., Eeken J. C., Lohman P. H. Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 2001; 480–481: 37–50
  • Pavlov Y. I., Mian I. M., Kunkel T. A. Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 2003; 13: 744–748
  • Pawlik T. M., Raut C. P., Rodriguez-Bigas M. A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers 2004; 20: 199–206
  • Pedraza-Reyes M., Yasbin R. E. Contribution of the mismatch DNA repair system to the generation of stationary-phase-induced mutants of Bacillus subtilis. J Bacteriol 2004; 186: 6485–6491
  • Ponder R. G., Fonville N. C., Rosenberg S. M. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 2005; 19: 791–804
  • Powers S., Kataoka T., Fasano O., Goldfarb M., Strathern J., Broach J., Wigler M. Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 1984; 36: 607–612
  • Prakash S., Prakash L. Nucleotide excision repair in yeast. Mutat Res 2000; 451: 13–24
  • Rattray A. J., Shafer B. K., McGill C. B., Strathern J. N. The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. Genetics 2002; 162: 1063–1077
  • Rojas Gil A. P., Vondrejs V. Development of papillae on colonies of two isopolyauxotrophic strains of Saccharomyces cerevisiae allelic in RAD6 during adenine starvation. Folia Microbiol 1999; 44: 299–305
  • Rosche W. A., Foster P. L. The role of transient hypermutators in adaptive mutation in Escherichia coli. Proc Natl Acad Sci USA 1999; 96: 6862–6867
  • Rosenberg S. M. In pursuit of a molecular mechanism for adaptive mutation. Genome 1994; 37: 893–899
  • Rosenberg S. M. Mutation for survival. Curr Opin Genet Dev 1997; 7: 829–834
  • Rosenberg S. M. Evolving responsively: adaptive mutation. Nat Rev Genet 2001; 2: 504–515
  • Rosenberg S. M., Hastings P. J. Microbiology and evolution. Modulating mutation rates in the wild. Science 2003; 300: 1382–1383
  • Rosenberg S. M., Longerich S., Gee P., Harris R. S. Adaptive mutation by deletions in small mononucleotide repeats. Science 1994; 265: 405–407
  • Rosenberg S. M., Thulin C., Harris R. S. Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics 1998; 148: 1559–1566
  • Ryan F. J. Spontaneous mutation in non-dividing bacteria. Genetics 1955; 40: 726–738
  • Sarkar S., Davies A. A., Ulrich H. D., McHugh P. J. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J 2006; 25: 1285–1294
  • Schofield M. J., Hsieh P. DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol 2003; 57: 579–608
  • Seki M., Gearhart P. J., Wood R. D. DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Rep 2005; 6: 1143–1148
  • Speicher M. R. Microsatellite instability in human cancer. Oncol Res 1995; 7: 267–275
  • Steele D. F., Jinks-Robertson S. An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics 1992; 132: 9–21
  • Storchova Z., Gil A. P., Janderova B., Vlasak J., Vondrejs V. Accumulation of Ade +reversions in isoauxotrophic stains of Saccharomyces cerevisiae allelic in RAD6 during adenine starvation. Folia Microbiol 1997; 42: 47–51
  • Storchova Z., Rojas Gil A. P., Janderova B., Vondrejs V. The involvement of the RAD6 gene in starvation-induced reverse mutation in Saccharomyces cerevisiae. Mol Gen Genet 1998; 258: 546–552
  • Storchova Z., Vondrejs V. Starvation-associated mutagenesis in yeast Saccharomyces cerevisiae is affected by Ras2/cAMP signaling pathway. Mutat Res 1999; 431: 59–67
  • Strauss B. S. The origin of point mutations in human tumor cells. Cancer Res 1992; 52: 249–253
  • Symington L. S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol Biol Rev 2002; 66: 630–670
  • Thorne M. C. Background radiation: natural and man-made. J Radiol Prot 2003; 23: 29–42
  • Toda T., Broek D., Field J., Michaeli T., Cameron S., Nikawa J., Sass P., Birchmeier C., Powers S., Wigler M. Exploring the function of RAS oncogenes by studying the yeast Saccharomyces cerevisiae. Princess Takamatsu Symp 1986; 17: 253–260
  • Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J 1997; 16: 3303–3311
  • Tseng H. M., Tomkinson A. E. A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining. J Biol Chem 2002; 277: 45630–45637
  • Valencia M., Bentele M., Vaze M. B., Herrmann G., Kraus E., Lee S. E., Schar P., Haber J. E. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 2001; 414: 666–669
  • von Borstel R. C. Measuring spontaneous mutation rates in yeast. Methods Cell Biol 1978; 20: 1–24
  • von Borstel R. C., Savage E. A., Wang Q., Hennig U. G., Ritzel R. G., Lee G. S., Hamilton M. D., Chrenek M. A., Tomaszewski R. W., Higgins J. A., et al. Topical reversion at the HIS1 locus of Saccharomyces cerevisiae. A tale of three mutants. Genetics 1998; 148: 1647–1654
  • Weeks G., Spiegelman G. B. Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal 2003; 15: 901–909
  • Wilson T. E., Lieber M. R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J Biol Chem 1999; 274: 23599–23609
  • Wintersberger U. On the origins of genetic variants. FEBS Lett 1991; 285: 160–164
  • Wood R. D., Shivji M. K. Which DNA polymerases are used for DNA-repair in eukaryotes?. Carcinogenesis 1997; 18: 605–610
  • Xiao W., Chow B. L., Broomfield S., Hanna M. The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 2000; 155: 1633–1641
  • Zeyl C. Capturing the adaptive mutation in yeast. Res Microbiol 2004; 155: 217–223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.