687
Views
26
CrossRef citations to date
0
Altmetric
Review Article

PAX3 across the spectrum: from melanoblast to melanoma

&
Pages 85-97 | Received 01 Dec 2008, Accepted 16 Jan 2009, Published online: 01 Jun 2009

References

  • Bandara LR, and La Thangue NB. (1991). Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351:494–497.
  • Bang AG, Papalopulu N, Kintner C, and Goulding MD. (1997). Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124:2075–2085.
  • Barber TD, Barber MC, Cloutier TE, and Friedman TB. (1999). PAX3 gene structure, alternative splicing and evolution. Gene 237:311–319.
  • Barber TD, Barber MC, Tomescu O, Barr FG, Ruben S, and Friedman TB. (2002). Identification of target genes regulated by PAX3 and PAX3-FKHR in embryogenesis and alveolar rhabdomyosarcoma. Genomics 79:278–284.
  • Barr FG, Galili N, Holick J, Biegel JA, Rovera G, and Emanuel BS. (1993). Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 3:113–117.
  • Barr FG, Fitzgerald JC, Ginsberg JP, Vanella ML, Davis RJ, and Bennicelli JL. (1999). Predominant expression of alternative PAX3 and PAX7 forms in myogenic and neural tumor cell lines. Cancer Res 59:5443–5448.
  • Baxter LL, and Pavan WJ. (2002). The oculocutaneous albinism type IV gene Matp is a new marker of pigment cell precursors during mouse embryonic development. Mech Dev 116:209–212.
  • Bernasconi M, Remppis A, Fredericks WJ, Rauscher FJ 3rd, Schafer BW. (1996). Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 93:13164–13169.
  • Blake JA, and Ziman MR. (2005). Pax3 transcripts in melanoblast development. Dev Growth Differ 47:627–635.
  • Blake JA, Thomas M, Thompson JA, White R, and Ziman M. (2008). Perplexing Pax: from puzzle to paradigm. Dev Dyn 237:2791–2803.
  • Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M, and Goossens M. (2000). Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 9:1907–1917.
  • Borycki AG, Li J, Jin F, Emerson CP, and Epstein JA. (1999). Pax3 functions in cell survival and in pax7 regulation. Development 126:1665–1674.
  • Boutet SC, Disatnik MH, Chan LS, Iori K, and Rando TA. (2007). Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130:349–362.
  • Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, Roth JA, Albelda SM, Davies H, Cox C, Brignell G, Stephens P, Futreal PA, Wooster R, Stratton MR, and Weber BL. (2002). BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62:6997–7000.
  • Buck V, Allen KE, Sorensen T, Bybee A, Hijmans EM, Voorhoeve PM, Bernards R, and La Thangue NB. (1995). Molecular and functional characterisation of E2F-5, a new member of the E2F family. Oncogene 11:31–38.
  • Budd PS, and Jackson IJ. (1995). Structure of the mouse tyrosinase-related protein-2/dopachrome tautomerase (Tyrp2/Dct) gene and sequence of two novel slaty alleles. Genomics 29:35–43.
  • Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, Larue L, and Goding CR. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433:764–769.
  • Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, and Goding CR. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20:3426–3439.
  • Chalepakis G, and Gruss P. (1995). Identification of DNA recognition sequences for the Pax3 paired domain. Gene 162:267–270.
  • Chalepakis G, Jones FS, Edelman GM, and Gruss P. (1994). Pax-3 contains domains for transcription activation and transcription inhibition. Proc Natl Acad Sci USA 91:12745–12749.
  • Chi N, and Epstein JA. (2002). Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18:41–47.
  • Commo S, Gaillard O, Thibaut S, and Bernard BA. (2004). Absence of TRP-2 in melanogenic melanocytes of human hair. Pigment Cell Res 17:488–497.
  • Cook AL, Donatien PD, Smith AG, Murphy M, Jones MK, Herlyn M, Bennett DC, Leonard JH, and Sturm RA. (2003). Human melanoblasts in culture: expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3. J Invest Dermatol 121:1150–1159.
  • Cook AL, Smith AG, Smit DJ, Leonard JH, and Sturm RA. (2005). Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp Cell Res 308:222–235.
  • Corry GN, and Underhill DA. (2005). Pax3 target gene recognition occurs through distinct modes that are differentially affected by disease-associated mutations. Pigment Cell Res 18:427–438.
  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, and Bottomley W. (2002). Mutations of the BRAF gene in human cancer. Nature 417:949–954.
  • Di Cristofano A, and Pandolfi PP. (2000). The multiple roles of PTEN in tumor suppression. Cell 100:387–390.
  • Drochmans P. (1960). Electron microscope studies of epidermal melanocytes, and the fine structure of melanin granules. J Biophys Biochem Cytol 8:165–180.
  • Epstein DJ, Vogan KJ, Trasler DG, and Gros P. (1993). A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc Natl Acad Sci USA 90:532–536.
  • Epstein JA, Shapiro DN, Cheng J, Lam PY, and Maas RL. (1996). Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93:4213–4218.
  • Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, and Herlyn M. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337.
  • Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, Liu X, and Wu H. (2003). PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3:117–130.
  • Frost V, Grocott T, Eccles MR, and Chantry A. (2008). Self-regulated Pax gene expression and modulation by the TGFbeta superfamily. Crit Rev Biochem Mol Bio 43:371–391.
  • Galibert MD, Yavuzer U, Dexter TJ, and Goding CR. (1999). Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter. J Biol Chem 274:26894–26900.
  • Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS, Rovera G, and Barr FG. (1993). Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230–235.
  • Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, and Sellers WR. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436:117–122.
  • Gershon TR, Oppenheimer O, Chin SS, and Gerald WL. (2005). Temporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation. Neoplasia 7:575–584.
  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, and Gruss P. (1991). Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. Embo J 10:1135–1147.
  • Graf Finckenstein F, Shahbazian V, Davicioni E, Ren YX, and Anderson MJ. (2008). PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis. Oncogene 27:2004–2014.
  • Gray-Schopfer V, Wellbrock C, and Marais R. (2007). Melanoma biology and new targeted therapy. Nature 445:851–857.
  • Grichnik JM. (2008). Melanoma, nevogenesis, and stem cell biology. J Invest Dermatol 128:2365–2380.
  • Grichnik JM, Burch JA, Schulteis RD, Shan S, Liu J, Darrow TL, Vervaert CE, and Seigler HF. (2006). Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol 126:142–153.
  • Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW, Naber SP, and Weinberg RA. (2005). The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37:1047–1054.
  • Harris RG, White E, Phillips ES, and Lillycrop KA. (2002). The expression of the developmentally regulated proto-oncogene Pax-3 is modulated by N-Myc. J Biol Chem 277:34815–34825.
  • He SJ, Stevens G, Braithwaite AW, and Eccles MR. (2005). Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity. Mol Cancer Ther 4:996–1003.
  • Helin K, Lees JA, Vidal M, Dyson N, Harlow E, and Fattaey A. (1992). A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70:337–350.
  • Himoudi N, Nabarro S, Yan M, Gilmour K, Thrasher AJ, and Anderson J. (2007). Development of anti-PAX3 immune responses; a target for cancer immunotherapy. Cancer Immunol Immunother 56:1381–1395.
  • Hirobe T. (1984). Histochemical survey of the distribution of the epidermal melanoblasts and melanocytes in the mouse during fetal and postnatal periods. Anat Rec 208:589–594.
  • Hirobe T, and Takeuchi T. (1977). Induction of melanogenesis in the epidermal melanoblasts of newborn mouse skin by MSH. J Embryol Exp Morphol 37:79–90.
  • Hoek KS. (2007). DNA microarray analyses of melanoma gene expression: a decade in the mines. Pigment Cell Res 20:466–484.
  • Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, Schadendorf D, and Dummer R. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19:290–302.
  • Hong CS, and Saint-Jeannet JP. (2007). The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. Mol Biol Cell 18:2192–2202.
  • Hornyak TJ, Hayes DJ, Chiu LY, and Ziff EB. (2001). Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech Dev 101:47–59.
  • Hou L, Panthier JJ, and Arnheiter H. (2000). Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development 127:5379–5389.
  • Hsieh MJ, Yao YL, Lai IL, and Yang WM. (2006). Transcriptional repression activity of PAX3 is modulated by competition between corepressor KAP1 and heterochromatin protein 1. Biochem Biophys Res Commun 349:573–581.
  • Jiao Z, Mollaaghababa R, Pavan WJ, Antonellis A, Green ED, and Hornyak TJ. (2004). Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res 17:352–362.
  • Jostes B, Walther C, and Gruss P. (1990). The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 33:27–37.
  • Kawa Y, Ito M, Ono H, Asano M, Takano N, Ooka S, Watabe H, Hosaka E, Baba T, Kubota Y, and Mizoguchi M. (2000). Stem cell factor and/or endothelin-3 dependent immortal melanoblast and melanocyte populations derived from mouse neural crest cells. Pigment Cell Res 13 Suppl 8:73–80.
  • Keshet GI, Goldstein I, Itzhaki O, Cesarkas K, Shenhav L, Yakirevitch A, Treves AJ, Schachter J, Amariglio N, and Rechavi G. (2008). MDR1 expression identifies human melanoma stem cells. Biochem Biophys Res Commun 368:930–936.
  • Koyanagi K, Kuo C, Nakagawa T, Mori T, Ueno H, Lorico AR Jr, Wang HJ, Hseuh E, O’Day SJ, and Hoon DS. (2005). Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. Clin Chem 51:981–988.
  • Kubic JD, Young KP, Plummer RS, Ludvik AE, and Lang D. (2008). Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 21:627–645.
  • Kulhbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, and Wegner M. (1998). SOX10, a novel transcriptional modulator in glia cells. J Neurosci 18:237–250.
  • Kunisada T, Yoshida H, Ogawa M, Shultz LD, and Nishikawa S. (1996). Characterisation and isolation of melanocyte progenitors from mouse embryos. Dev Growth Differ 38:87–97.
  • Kushimoto T, Valencia JC, Costin GE, Toyofuku K, Watabe H, Yasumoto K, Rouzaud F, Vieira WD, and Hearing VJ. (2003). The Seiji memorial lecture: the melanosome: an ideal model to study cellular differentiation. Pigment Cell Res 16:237–244.
  • Lang D, and Epstein JA. (2003). Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 12:937–945.
  • Lang D, Chen F, Milewski R, Li J, Lu MM, and Epstein JA. (2000). Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest 106:963–971.
  • Lang D, Lu MM, Huang L, Engleka KA, Zhang M, Chu EY, Lipner S, Skoultchi A, Millar SE, and Epstein JA. (2005). Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433:884–887.
  • Lang D, Powell SK, Plummer RS, Young KP, and Ruggeri BA. (2007). PAX genes: roles in development, pathophysiology, and cancer. Biochem Pharmacol 73:1–14.
  • Lee JT, and Herlyn M. (2007). Old disease, new culprit: tumor stem cells in cancer. J Cell Physiol 213:603–609.
  • Lekmine F, Chang CK, Sethakorn N, Das Gupta TK, and Salti GI. (2007). Role of microphthalmia transcription factor (Mitf) in melanoma differentiation. Biochem Biophys Res Commun 354:830–835.
  • Lerner AB, Shiohara T, Boissy RE, Jacobson KA, Lamoreux ML, and Moellmann GE. (1986). A mouse model for vitiligo. J Invest Dermatol 87:299–304.
  • Li HG, Wang Q, Li HM, Kumar S, Parker C, Slevin M, and Kumar P. (2007). PAX3 and PAX3-FKHR promote rhabdomyosarcoma cell survival through downregulation of PTEN. Cancer Lett 253:215–223.
  • Ludwig A, Rehberg S, and Wegner M. (2004). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett 556:236–244.
  • Mak SS, Moriyama M, Nishioka E, Osawa M, and Nishikawa S. (2006). Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev Biol 291:144–153.
  • Margue CM, Bernasconi M, Barr FG, and Schafer BW. (2000). Transcriptional modulation of the anti-apoptotic protein BCL-XL by the paired box transcription factors PAX3 and PAX3/FKHR. Oncogene 19:2921–2929.
  • Matsuzaki Y, Hashimoto S, Fujita T, Suzuki T, Sakurai T, Matsushima K, and Kawakami Y. (2005). Systematic identification of human melanoma antigens using serial analysis of gene expression (SAGE). J Immunother 28:10–19.
  • Mayanil CS, George D, Mania-Farnell B, Bremer CL, McLone DG, and Bremer EG. (2000). Overexpression of murine Pax3 increases NCAM polysialylation in a human medulloblastoma cell line. J Biol Chem 275:23259–23266.
  • Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone DG, and Bremer EG. (2001). Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 276:49299–49309.
  • Mayanil CS, Pool A, Nakazaki H, Reddy AC, Mania-Farnell B, Yun B, George D, McLone DG, and Bremer EG. (2006). Regulation of murine TGFbeta2 by Pax3 during early embryonic development. J Biol Chem 281:24544–24552.
  • McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, and Fisher DE. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109:707–718.
  • McGill GG, Haq R, Nishimura EK, and Fisher DE. (2006). c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem 281:10365–10373.
  • Meulemans D, and Bronner-Fraser M. (2004). Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7:291–299.
  • Miller PJ, and Hollenbach AD. (2007). The oncogenic fusion protein Pax3-FKHR has a greater post-translational stability relative to Pax3 during early myogenesis. Biochim Biophys Acta 1770:1450–1458.
  • Miller PJ, Dietz KN, and Hollenbach AD. (2008). Identification of serine 205 as a site of phosphorylation on Pax3 in proliferating but not differentiating primary myoblasts. Protein Sci 17:1979–1986.
  • Mollaaghababa R, and Pavan WJ. (2003). The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22:3024–3034.
  • Moriyama M, Osawa M, Mak SS, Ohtsuka T, Yamamoto N, Han H, Delmas V, Kageyama R, Beermann F, Larue L, and Nishikawa S. (2006). Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173:333–339.
  • Muratovska A, Zhou C, He S, Goodyer P, and Eccles MR. (2003). Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22:7989–7997.
  • Nakayama A, Nguyen MT, Chen CC, Opdecamp K, Hodgkinson CA, and Arnheiter H. (1998). Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech Dev 70:155–166.
  • Nakazaki H, Reddy AC, Mania-Farnell BL, Shen YW, Ichi S, McCabe C, George D, McLone DG, Tomita T, and Mayanil CS. (2008). Key basic helix-loop-helix transcription factor genes Hes1 and Ngn2 are regulated by Pax3 during mouse embryonic development. Dev Biol 316:510–523.
  • Nishikawa S, and Osawa M. (2007). Generating quiescent stem cells. Pigment Cell Res 20:263–270.
  • Nishimura EK, Granter SR, and Fisher DE. (2005). Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307:720–724.
  • Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC, and Vogel JC. (2006). Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116:249–260.
  • Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, and Arnheiter H. (1997). Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124:2377–2386.
  • Osawa M, Egawa G, Mak SS, Moriyama M, Freter R, Yonetani S, Beermann F, and Nishikawa S. (2005). Molecular characterization of melanocyte stem cells in their niche. Development 132:5589–5599.
  • Pani L, Horal M, and Loeken MR. (2002). Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3- dependent development and tumorigenesis. Genes Dev 16:676–680.
  • Parker CJ, Shawcross SG, Li H, Wang QY, Herrington CS, Kumar S, MacKie RM, Prime W, Rennie IG, Sisley K, and Kumar P. (2004). Expression of PAX 3 alternatively spliced transcripts and identification of two new isoforms in human tumors of neural crest origin. Int J Cancer 108:314–320.
  • Plummer RS, Shea CR, Nelson M, Powell SK, Freeman DM, Dan CP, and Lang D. (2008). PAX3 expression in primary melanomas and nevi. Mod Pathol 21:525–530
  • Pollock PM, and Meltzer PS. (2002). A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2:5–7.
  • Potterf SB, Furumura M, Dunn KJ, Arnheiter H, and Pavan WJ. (2000). Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 107:1–6.
  • Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H, and Pavan WJ. (2001). Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol 237:245–257.
  • Pruitt SC, Bussman A, Maslov AY, Natoli TA, and Heinaman R. (2004). Hox/Pbx and Brn binding sites mediate Pax3 expression in vitro and in vivo. Gene Expr Patterns 4:671–685.
  • Quevedo WC, Szabo G, and Virks J. (1969). Influence of age and UV on the populations of dopa-positive melanocytes in human skin. J Invest Dermatol 52:287–290.
  • Relaix F, Rocancourt D, Mansouri A, and Buckingham M. (2004). Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev 18:1088–1105.
  • Reya T, Morrison SJ, Clarke MF, and Weissman IL. (2001). Stem cells, cancer, and cancer stem cells. Nature 414:105–111.
  • Rhee JM, Gruber CA, Brodie TB, Trieu M, and Turner EE. (1998). Highly cooperative homodimerization is a conserved property of neural POU proteins. J Biol Chem 273:34196–34205.
  • Robson EJ, He SJ, and Eccles MR. (2006). A PANorama of PAX genes in cancer and development. Nat Rev Cancer 6:52–62.
  • Rodeberg DA, Nuss RA, Elsawa SF, Erskine CL, and Celis E. (2006). Generation of tumoricidal PAX3 peptide antigen specific cytotoxic T lymphocytes. Int J Cancer 119:126–132.
  • Ryu B, Kim DS, Deluca AM, and Alani RM. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE 2:e594.
  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, and Doetschman T. (1997). TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670.
  • Schatton T, and Frank MH. (2008). Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res 21:39–55.
  • Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, and Frank MH. (2008). Identification of cells initiating human melanomas. Nature 451:345–349.
  • Scholl FA, Kamarashev J, Murmann OV, Geertsen R, Dummer R, and Schafer BW. (2001). PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res 61:823–826.
  • Schwahn DJ, Timchenko NA, Shibahara S, and Medrano EE. (2005). Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. Pigment Cell Res 18:203–213.
  • Seo HC, Saetre BO, Havik B, Ellingsen S, and Fjose A. (1998). The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech Dev 70:49–63.
  • Shapiro DN, Sublett JE, Li B, Downing JR, and Naeve CW. (1993). Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res 53:5108–5112.
  • Shih IM, Speicher D, Hsu MY, Levine E, and Herlyn M. (1997). Melanoma cell-cell interactions are mediated through heterophilic Mel-CAM/ligand adhesion. Cancer Res 57:3835–3840.
  • Shinozaki M, Fujimoto A, Morton DL, and Hoon DS. (2004). Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res 10:1753–1757.
  • Steel KP, Davidson DR, and Jackson IJ. (1992). TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115:1111–1119.
  • Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K, and Shibahara S. (2000). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem 275:14013–14016.
  • Takeuchi H, Morton DL, Kuo C, Turner RR, Elashoff D, Elashoff R, Taback B, Fujimoto A, and Hoon DS. (2004). Prognostic significance of molecular upstaging of paraffin-embedded sentinel lymph nodes in melanoma patients. J Clin Oncol 22:2671–2680.
  • Tomescu O, Xia SJ, Strezlecki D, Bennicelli JL, Ginsberg J, Pawel B, and Barr FG. (2004). Inducible short-term and stable long-term cell culture systems reveal that the PAX3-FKHR fusion oncoprotein regulates CXCR4, PAX3, and PAX7 expression. Lab Invest 84:1060–1070.
  • Tsukamoto K, Nakamura Y, and Niikawa N. (1994). Isolation of two isoforms of the PAX3 gene transcripts and their tissue-specific alternative expression in human adult tissues. Hum Genet 93:270–274.
  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, and Fuchs E. (2004). Defining the epithelial stem cell niche in skin. Science 303:359–363.
  • Underhill DA, and Gros P. (1997). The paired-domain regulates DNA binding by the homeodomain within the intact Pax-3 protein. J Biol Chem 272:14175–14182.
  • Underwood TJ, Amin J, Lillycrop KA, and Blaydes JP. (2007). Dissection of the functional interaction between p53 and the embryonic proto-oncoprotein PAX3. FEBS Lett 581:5831–5835.
  • Vermeulen L, Sprick MR, Kemper K, Stassi G, and Medema JP. (2008). Cancer stem cells – old concepts, new insights. Cell Death Differ 15:947–958.
  • Visvader JE, and Lindeman GJ. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768.
  • Vorobyov E, Mertsalov I, Dockhorn-Dworniczak B, Dworniczak B, and Horst J. (1997). The genomic organization and the full coding region of the human PAX7 gene. Genomics 45:168–174.
  • Wang Q, Kumar S, Mitsios N, Slevin M, and Kumar P. (2007). Investigation of downstream target genes of PAX3c, PAX3e and PAX3g isoforms in melanocytes by microarray analysis. Int J Cancer 120:1223–1231.
  • Wang Q, Fang WH, Krupinski J, Kumar S, Slevin M, and Kumar P. (2008). Pax genes in embryogenesis and oncogenesis. J Cell Mol Med 12:2281–2294.
  • Watanabe A, Takeda K, Ploplis B, and Tachibana M. (1998). Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 18:283–286.
  • Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, and Marais R. (2008). Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE 3:e2734.
  • Wiggan O, Taniguchi-Sidle A, and Hamel PA. (1998). Interaction of the pRB-family proteins with factors containing paired-like homeodomains. Oncogene 16:227–236.
  • Yanfeng W, Saint-Jeannet JP, and Klein PS. (2003). Wnt-frizzled signaling in the induction and differentiation of the neural crest. Bioessays 25:317–325.
  • Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, and Shibahara S. (2002). Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. Embo J 21:2703–2714.
  • Yavuzer U, and Goding CR. (1994). Melanocyte-specific gene expression: role of repression and identification of a melanocyte-specific factor, MSF. Mol Cell Biol 14:3494–3503.
  • Yoshida H, Kunisada T, Kusakabe M, Nishikawa S, and Nishikawa SI. (1996). Distinct stages of melanocyte differentiation revealed by anlaysis of nonuniform pigmentation patterns. Development 122:1207–1214.
  • Zhou M, Gu L, Findley HW, Jiang R, and Woods WG. (2003). PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res 63:6357–6362.
  • Zhu BK, and Pruitt SC. (2005). Determination of transcription factors and their possible roles in the regulation of Pax3 gene expression in the mouse B16 F1 melanoma cell line. Melanoma Res 15:363–373.
  • Ziman M, and White R. (2006). PAX genes in cell differentiation, lineage development and pathogenesis, pp. 235–259. In: Sherbet GV, ed. The Molecular and Cellular Pathology of Cancer Progression and Prognosis, Kerala: Research Signpost.
  • Ziman M, Medic S, Slattery R, and Pearce R. (2008). Blood test for cutaneous malignant melanoma, pp. 3552–3553. Eighth International Conference of Anticancer Research, Delinassios JG, ed., Kos: International Institute of Anticancer Research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.