3,294
Views
99
CrossRef citations to date
0
Altmetric
Review Article

Translational control of eukaryotic gene expression

, , &
Pages 143-168 | Received 03 Feb 2009, Accepted 10 Mar 2009, Published online: 16 Jul 2009

References

  • Abastado J-P, Miller PF, Jackson BM and Hinnebusch AG. 1991. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 11:486–496.
  • Abramson RD, Browning KS, Dever TE, Lawson TG, Thach RE, Ravel JM and Merrick WC. 1988. Initiation factors that bind mRNA. A comparison of mammalian factors with wheat germ factors. J Biol Chem 263:5462–5467.
  • Agredano-Moreno LT, Reyes de la Cruz H, Martínez-Castilla LP and Sánchez de Jiménez E. 2007. Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Mol BioSyst 3:794–802.
  • Akiri G, Nahari D, Finkelstein Y, Le S-Y, Elroy-Stein O and Levi B-Z. 1998. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17:227–236.
  • Alderete JP, Child SJ and Geballe AP. 2001. Abundant early expression of gpUL4 from a human cytomegalovirus mutant lacking a repressive upstream open reading frame. J Virol 75:7188–7192.
  • Alessi DR. 2001. Discovery of PDK1, one of the missing links in insulin signal transduction. Biochem Soc Trans 29:1–14.
  • Allen ML, Metz AM, Timmer RT, Rhoads RE and Browning KS. 1992. Isolation and sequence of the cDNAs encoding the subunits of the isozyme form of wheat protein synthesis initiation factor 4F. J Biol Chem 267:23232–23236.
  • Altmann M, Handschin C and Trachsel H. 1987. mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae. Mol Cell Biol 7:998–1003.
  • álvarez E, Menéndez-Arias L and Carrasco L. 2003. The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases. J Virol 77:12392–12400.
  • Ambros V. 2004. The functions of animal microRNAs. Nature 431:350–355.
  • Anderson GH and Hanson MR. 2005. The Arabidopsis Mei2 homologue AML1 binds AtRaptorIB, the plant homologue of a major regulator of eukaryotic cell growth. BCM Plant Biol 5:2.1–2.8.
  • Anderson GH, Veit B and Hanson MR. 2005. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BCM Biol 3:12.1–12.11.
  • Anderson L and Seilhamer J. 1997. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537.
  • Asano K, Krishnamoorthy T, Phan L, Pavitt GD and Hinnebusch AG. 1999. Conserved bipartite motifs in yeast eIF5 and eIF2Bϵ, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 18:1673–1688.
  • Ashe MP, De Long SK and Sachs AB. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11:833–848.
  • Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S and Yonezawa K. 2006. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 25:6361–6372.
  • Bally-Cuif L, Schatz WJ and Ho RK. 1998. Characterization of the zebrafish Orb/CPEB-related RNA-binding protein and localization of maternal components in the zebrafish oocyte. Mech Dev 77:31–47.
  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF and Hall MN. 1996. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42.
  • Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E, Rao PH and Ruggero D. 2008. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456:971–975.
  • Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297.
  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P and Izaurralde E. 2006. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898.
  • Beilharz TH and Preiss T. 2004. Translational profiling: the genome-wide measure of the nascent proteome. Brief Funct Genomics Proteomics 3:103–111.
  • Belostotsky DA. 2003. Unexpected complexity of poly(A)-binding protein gene families in flowering plants: three conserved lineages that are at least 200 million years old and possible auto- and cross-regulation. Genetics 163:311–319.
  • Belostotsky DA and Meagher RB. 1993. Differential organ- specific expression of three poly(A)-binding-protein genes from Arabidopsis thaliana. Proc Natl Acad Sci USA 90:6686–6690.
  • Belostotsky DA and Meagher RB. 1996. A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. Plant Cell 8:1261–1275.
  • Berlanga JJ, Santoyo J and de Haro C. 1999. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase. Eur J Biochem 265:754–762.
  • Bernal A and Kimbrell DA. 2000. Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc Natl Acad Sci USA 97:6019–6024.
  • Beyer A, Hollunder J, Nasheuer H-P and Wilhelm T. 2004. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3:1083–1092.
  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI and Filipowicz W. 2006. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124.
  • Bi X and Goss DJ. 2000. Wheat germ poly(A)-binding protein increases the ATPase and the RNA helicase activity of translation initiation factors eIF4A, eIF4B, and eIF-iso4F. J Biol Chem 275:17740–17746.
  • Bi X, Ren J and Goss DJ. 2000. Wheat germ translation initiation factor eIF4B affects eIF4A and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A. Biochemistry 39:5758–5765.
  • Bonawitz ND, Chatenay-Lapointe M, Pan Y and Shadel GS. 2007. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5:265–277.
  • Bonnal S, Boutonnet C, Prado-Lourenço L and Vagner S. 2003. IRESdb: the Internal Ribosome Entry Site database. Nucleic Acids Res 31:427–428.
  • Bonneau A-M and Sonenberg N. 1987. Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis. J Biol Chem 262:11134–11139.
  • Bonnet E, Wuyts J, Rouzé P and Van de Peer Y. 2004. Detection of 91 conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important new target genes. Proc Natl Acad Sci USA 101:11511–11516.
  • Bradley CA, Padovan JC, Thompson TL, Benoit CA, Chait BT and Rhoads RE. 2002. Mass spectrometric analysis of the N terminus of translational initiation factor eIF4G-1 reveals novel isoforms. J Biol Chem 277:12559–12571.
  • Branco-Price C, Kawaguchi R, Ferreira RB and Bailey-Serres J. 2005. Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660.
  • Brander KA, Mandel T, Owttrim GW and Kuhlemeier C. 1995. Highly conserved genes coding for eukaryotic translation initiation factor eIF-4A of tobacco have specific alterations in functional motifs. Biochim Biophys Acta 1261:442–444.
  • Bravo J, Aguilar-Henonin L, Olmedo G and Guzmán P. 2005. Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana poly(A)-binding proteins. Mol Gen Genomics 272:651–665.
  • Brazil DP, Yang Z-Z and Hemmings BA. 2004. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242.
  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L and Voinnet O. 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190.
  • Browne GJ and Proud CG. 2002. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 269:5360–5368.
  • Browning KS, Lax SR and Ravel JM. 1987. Identification of two messenger RNA cap binding proteins in wheat germ. Evidence that the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F are antigenically distinct polypeptides. J. Biol. Chem. 262:11228–11232.
  • Browning KS, Webster C, Roberts JKM and Ravel JM. 1992. Identification of an isozyme form of protein synthesis initiation factor 4F in plants. J Biol Chem 267:10096–10100.
  • Burks EA, Bezerra PP, Le H, Gallie DR and Browning KS. 2001. Plant initiation factor 3 subunit composition resembles mammalian initiation factor 3 and has a novel subunit. J Biol Chem 276:2122–2131.
  • Burnett PE, Barrow RK, Cohen NA, Snyder SH and Sabatini DM. 1998. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437.
  • Bushell M, Wood W, Carpenter G, Pain VM, Morley SJ and Clemens MJ. 2001. Disruption of the interaction of mammalian protein synthesis eukaryotic initiation factor 4B with the poly(A)-binding protein by caspase- and viral protease-mediated cleavages. J Biol Chem 276:23922–23928.
  • Byrd MP, Zamora M and Lloyd RE. 2002. Generation of multiple isoforms of eukaryotic translation initiation factor 4GI by use of alternate translation initiation codons. Mol Cell Biol 22:4499–4511.
  • Caponigro G and Parker R. 1995. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev 9:2421–2432.
  • Carberry SE and Goss DJ. 1991. Wheat germ initiation factors 4F and (iso)4F interact differently with oligoribonucleotide analogues of rabbit α-globin mRNA. Biochemistry 30:4542–4545.
  • Chakrabarti A and Maitra U. 1991. Function of eukaryotic initiation factor 5 in the formation of an 80 S ribosomal polypeptide chain initiation complex. J Biol Chem 266:14039–14045.
  • Chaudhuri J, Das K and Maitra U. 1994. Purification and characterization of bacterially expressed mammalian translation initiation factor 5 (eIF-5): demonstration that eIF-5 forms a specific complex with eIF-2. Biochemistry 33:4794–4799.
  • Chaudhuri J, Chowdhury D and Maitra U. 1999. Distinct functions of eukaryotic translation initiation factors eIF1A and eIF3 in the formation of the 40 S ribosomal preinitiation complex. J Biol Chem 274:17975–17980.
  • Chen J-J. 2000. Heme-regulated eIF2α kinase, pp. 529–546. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression (Cold Spring Harbor Monograph Series, Vol. 39 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Cheng S and Gallie DR. 2007. eIF4G, eIFiso4G, and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains. J Biol Chem 282:25247–25258.
  • Childs AC, Mehta DJ and Gerner EW. 2003. Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406.
  • Cigan AM, Feng L and Donahue TF. 1988. tRNA;met functions in directing the scanning ribosome to the start site of translation. Science 242:93–97.
  • Clemens MJ. 2001. Initiation factor eIF2α phosphorylation in stress responses and apoptosis, pp. 57–89. In: Rhoads RE, ed. Signaling Pathways for Translation Stress, Calcium, and Rapamycin (Progress in Molecular and Subcellular Biology, Vol. 27 ) Heidelberg: Springer.
  • Cohen P and Frame S. 2001. The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776.
  • Cormier P, Pyronnet S, Morales J, Mulner-Lorillon O, Sonenberg N and Bellé R. 2001. eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. Dev Biol 232:275–283.
  • Cormier P, Pyronnet S, Salaün P, Mulner-Lorillon O and Sonenberg N. 2003. Cap-dependent translation and control of the cell cycle, pp. 469–475. In: Meijer L, Jézéquel A and Roberge M, eds Cell Cycle Regulators as Therapeutic Targets (Progress in Cell Cycle Research, Vol. 5 ). New York: Plenum Press.
  • Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S and Beyaert R. 2000. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5:597–605.
  • Cornelis S, Tinton SA, Schepens B, Bruynooghe Y and Beyaert R. 2005. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Res 33:3095–3108.
  • Craig AWB, Haghighat A, Yu ATK and Sonenberg N. 1998. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392:520–523.
  • Cullen PJ and Sprague GF Jr. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97:13619–13624.
  • Danaie P, Altmann M, Hall MN, Trachsel H and Helliwell SB. 1999. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Biochem J 340:135–141.
  • Das S and Maitra U. 2001. Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. Prog Nucleic Acid Res Mol Biol 70:207–231.
  • Das S, Maiti T, Das K and Maitra U. 1997. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the β-subunit of eIF2. J Biol Chem 272:31712–31718.
  • Datta B, Datta R, Mukherjee S and Zhang Z. 1999. Increased phosphorylation of eukaryotic initiation factor 2α at the G2/M boundary in human osteosarcoma cells correlates with deglycosylation of p67 and a decreased rate of protein synthesis. Exp Cell Res 250:223–230.
  • de Jong M, van Breukelen B, Wittink FR, Menke FLH, Wiesbeek PJ and Van den Ackerveken G. 2006. Membrane-associated transcripts in Arabidopsis; their isolation and characterization by DNA microarray analysis and bioinformatics. Plant J 46:708–721.
  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC and Thomas G. 2001. Mammalian TOR: a homeostatic ATP sensor. Science 294:1102–1105.
  • Deprost D, Truong H-N, Robaglia C and Meyer C. 2005. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Commun 326:844–850.
  • Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolaï M, Bedu M, Robaglia C and Meyer C. 2007. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870.
  • Dever TE, Dar AC and Sicheri F. 2007. The eIF2α kinases, pp. 319–344. In: Mathews MB, Sonenberg N and Hershey JWB, eds Translational Control in Biology and Medicine (Cold Spring Harbor Monograph Series, Vol. 48 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Dinkova TD, Zepeda H, Martínez-Salas E, Martínez LM, Nieto-Sotelo J and Sánchez de Jiménez E. 2005. Cap-independent translation of maize Hsp101. Plant J 41:722–731.
  • Dorris DR, Erickson FL and Hannig EM. 1995. Mutations in GCD11, the structural gene for eIF-2γ in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J 14:2239–2249.
  • Dunaeva M and Adamska I. 2001. Identification of genes expressed in response to light stress in leaves of Arabidopsis thaliana using RNA differential display. Eur J Biochem 268:5521–5529.
  • Duncan R and Hershey JWB. 1985. Regulation of initiation factors during translational repression caused by serum depletion. Covalent modification. J Biol Chem 260:5493–5497.
  • Duncan RF and Hershey JWB. 1989. Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J Cell Biol 109:1467–1481.
  • Erickson FL and Hannig EM. 1996. Ligand interactions with eukaryotic translation initiation factor 2: role of the γ-subunit. EMBO J 15:6311–6320.
  • Fan H and Penman S. 1970. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol 50:655–670.
  • Fang P, Spevak CC, Wu C and Sachs MS. 2004. A nascent polypeptide domain that can regulate translation elongation. Proc Natl Acad Sci USA 101:4059–4064.
  • Ferrer N, Garcia-Espana A, Jeffers M and Pellicer A. 1999. The unr gene: evolutionary considerations and nucleic acid-binding properties of its long isoform product. DNA Cell Biol 18:209–218.
  • Flynn A and Proud CG. 1995. Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem 270:21684–21688.
  • Flynn A and Proud CG. 1996. Insulin-stimulated phosphorylation of initiation factor 4E is mediated by the MAP kinase pathway. FEBS Lett 389:162–166.
  • Flynn A, Oldfield S and Proud CG. 1993. The role of the β-subunit of initiation factor eIF-2 in initiation complex formation. Biochim Biophys Acta 1174:117–121.
  • Frank J. 2003. Toward an understanding of the structural basis of translation. Genome Biol 4:237.
  • Freire MA. 2005. Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex. Gene 345:271–277.
  • Freire MA, Tourneur C, Granier F, Camonis J, El Amrani A, Browning KS and Robaglia C. 2000. Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein. Plant Mol Biol 44:129–140.
  • Fukunaga R and Hunter T. 1997. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:1921–1933.
  • Fumagalli S and Thomas G. 2000. S6 phosphorylation and signal transduction, pp. 695–717. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression (Cold Spring Harbor Monograph Series, Vol. 39 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Futcher B, Latter GI, Monardo P, McLaughlin CS and Garrels JI. 1999. A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368.
  • Fütterer J, Kiss-László Z and Hohn T. 1993. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell 73:789–802.
  • Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG and Sachs MS. 2001. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. EMBO J 20:6453–6463.
  • Gallie DR. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5:2108–2116.
  • Gallie DR and Browning KS. 2001. eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J Biol Chem 276:36951–36960.
  • Gallie DR, Le H, Caldwell C, Tanguay RL, Hoang NX and Browning KS. 1997. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J Biol Chem 272:1046–1053.
  • Gallie DR, Ling J, Niepel M, Morley SJ and Pain VM. 2000. The role of 5’-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes. Nucleic Acids Res 28:2943–2953.
  • Garcia-Sanz JA, Mikulits W, Livingstone A, Lefkovits I and Müllner EW. 1998. Translation control: a general mechanism for gene regulation during T cell activation. FASEB J 12:299–306.
  • García-Martínez J, Aranda A and Pérez-Ortín JE. 2004. Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Mol Cell 15:303–313.
  • Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK and Weissman JS. 2003. Global analysis of protein expression in yeast. Nature 425:737–741.
  • Gilbert WV, Zhou K, Butler TK and Doudna JA. 2007. Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317:1224–1227.
  • Ginalski K, Zhang H and Grishin NV. 2004. Raptor protein contains a caspase-like domain. Trends Biochem Sci 29:522–524.
  • Gingras A-C, Raught B and Sonenberg N. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963.
  • Gingras A-C, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszyska A, Aebersold R and Sonenberg N. 2001. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15:2852–2864.
  • Goyer C, Altmann M, Lee HS, Blanc A, Deshmukh M, Woolford JL Jr, Trachsel H and Sonenberg N. 1993. TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol Cell Biol 13:4860–4874.
  • Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S and Sonenberg N. 1998. A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18:334–342.
  • Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JEG and Wagner G. 2003. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115:739–750.
  • Grosset C, Chen C-YA, Xu N, Sonenberg N, Jacquemin-Sablon H and Shyu A-B. 2000. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103:29–40.
  • Gygi SP, Rochon Y, Franza BR and Aebersold R. 1999. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730.
  • Haghighat A and Sonenberg N. 1997. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5’-cap structure. J Biol Chem 272:21677–21680 [Err. J Biol Chem 272:29398].
  • Haghighat A, Mader S, Pause A and Sonenberg N. 1995. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 14:5701–5709.
  • Hake LE, Mendez R and Richter JD. 1998. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol 18:685–693.
  • Hannan KM, Brandenburger Y, Jenkins A, Sharkey K, Cavanaugh A, Rothblum L, Moss T, Poortinga G, McArthur GA, Pearson RB and Hannan RD. 2003. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 23:8862–8877.
  • Hardie DG, Scott JW, Pan DA and Hudson ER. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546:113–120.
  • Hashemzadeh-Bonehi L, Curtis PS, Morley SJ, Thorpe JR and Pain VM. 2003. Overproduction of a conserved domain of fission yeast and mammalian translation initiation factor eIF4G causes aberrant cell morphology and results in disruption of the localization of F-actin and the organization of microtubules. Genes Cells 8:163–178.
  • Hedge PS, White IR and Debouck C. 2003. Interplay of transcriptomics and proteomics. Curr Opin Biotechnol 14:647–651.
  • Heesom KJ, Gampel A, Mellor H and Denton RM. 2001. Cell cycle- dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr Biol 11:1374–1379.
  • Heiskala M, Zhang J, Hayashi S-i, Hölttä E and Andersson LC. 1999. Translocation of ornithine decarboxylase to the surface membrane during cell activation and transformation. EMBO J 18:1214–1222.
  • Hentze MW. 1997. eIF4G′-A multipurpose ribosome adapter? Science 275:500–501.
  • Hernández G and Vazquez-Pianzola P. 2005. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev 122:865–876.
  • Hershey JWB. 1991. Translational control in mammalian cells. Annu Rev Biochem 60:717–755.
  • Hershey JWB and Merrick WC. 2000. Pathway and mechanism of initiation of protein synthesis, pp. 33–88. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression, (Cold Spring Harbor Monograph Series, Vol. 39 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Hershey PEC, McWhirter SM, Gross JD, Wagner G, Alber T and Sachs AB. 1999. The cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J Biol Chem 274:21297–21304.
  • Hilson P, Carroll KL and Masson PH. 1993. Molecular characterization of PAB2, a member of the multigene family coding for poly(A)-binding proteins in Arabidopsis thaliana. Plant Physiol 103:525–533.
  • Hinnebusch AG. 1997. Translational regulation of yeast GCN4. J Biol Chem 272:21661–21664.
  • Hinnebusch AG. 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes, pp. 185–243. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression, (Cold Spring Harbor Monograph Series, Vol. 39 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Holcik M, Sonenberg N and Korneluk RG. 2000. Internal ribosome initiation of translation and the control of cell death. Trends Genet 16:469–473.
  • Holz MK, Ballif BA, Gygi SP and Blenis J. 2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–580.
  • Honda M, Shimazaki T and Kaneko S. 2005. La protein is a potent regulator of replication of hepatitis C virus in patients with chronic hepatitis C through internal ribosomal entry site-directed translation. Gastroenterology 128:449–462.
  • Horváth BM, Magyar Z, Zhang Y, Hamburger AW, Bakó L, Visser RGF, Bachem CWB and Bögre L. 2006. EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J 25:4909–4920.
  • Huang H-k, Yoon H, Hannig EM and Donahue TF. 1997. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev 11:2396–2413.
  • Hutchins AP, Roberts GR, Lloyd CW and Doonan JH. 2004. In vivo interaction between CDKA and eIF4A: a possible mechanism linking translation and cell proliferation. FEBS Lett 556:91–94.
  • Hutvágner G and Zamore PD. 2002. A microRNA in a multiple- turnover RNAi enzyme complex. Science 297:2056–2060.
  • Hieronymus H and Silver PA. 2003. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat Genet 33:155–161.
  • Humphreys DT, Westman BJ, Martin DIK and Preiss T. 2005. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966.
  • Iizuka N, Najita L, Franzusoff A and Sarnow P. 1994. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14:7322–7330.
  • Imataka H, Gradi A and Sonenberg N. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17:7480–7489.
  • Inoki K, Li Y, Zhu T, Wu J and Guan K-L. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657.
  • Inoki K, Zhu T and Guan K-L. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590.
  • Inzé D and De Veylder L. 2006. Cell cycle regulation in plant development. Annu Rev Genet 40:77–105.
  • Jackson RJ, Hunt SL, Reynolds JE and Kaminski A. 1995. Cap-dependent and cap-independent translation: operational distinctions and mechanistic interpretations, pp. 1–29. In: Sarnow P, ed. Cap-Independent Translation (Current Topics in Microbiology and Immunology, Vol. 203 ). Berlin: Springer.
  • Jacobson A. 1996. Poly(A) metabolism and translation: the closed-loop model, pp. 451–480. In: Hershey JWB, Mathews MB and Sonenberg N, eds, Translational Control (Cold Spring Harbor Monograph Series, Vol. 30 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Jang SK, Kräusslich H-G, Nicklin MJH, Duke GM, Palmenberg AC and Wimmer E. 1988. A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643.
  • Jefferies HBJ, Reinhard C, Kozma SC and Thomas G. 1994. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 91:4441–4445.
  • Joshi B, Cai A-L, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E and Rhoads RE. 1995. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J Biol Chem 270:14597–14603.
  • Joshi B, Cameron A and Jagus R. 2004. Characterization of mammalian eIF4E-family members. Eur J Biochem 271:2189–2203.
  • Kahvejian A, Roy G and Sonenberg N. 2001. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb Symp Quant Biol 66:293–300.
  • Kaneda S, Yura T and Yanagi H. 2000. Production of three distinct mRNAs of 150 kDa oxygen-regulated protein (ORP150) by alternative promoters: preferential induction of one species under stress conditions. J Biochem 128:529–538.
  • Kaufman RJ. 2000. The double-stranded RNA-activated protein kinase PKR, pp. 503–527. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression (Cold Spring Harbor Monograph Series, Vol. 39 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Khaleghpour K, Kahvejian A, De Crescenzo G, Roy G, Svitkin YV, Imataka H, O’Connor-McCourt M and Sonenberg N. 2001. Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol Cell Biol 21:5200–5213.
  • Kim JH, Paek KY, Choi K, Kim T-D, Hahm B, Kim K-T and Jang SK. 2003. Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol Cell Biol 23:708–720.
  • Kimball SR. 2001. Regulation of translation initiation by amino acids in eukaryotic cells, pp. 155–184. In: Rhoads RE, ed. Signaling Pathways for Translation: Insulin and Nutrients (Progress in Molecular and Subcellular Biology, Vol. 26 ). Berlin: Springer.
  • Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT and Mourelatos Z. 2007. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151.
  • Kiyosue T, Yamaguchi-Shinozaki K and Shinozaki K. 1994. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol 106:1707–1707.
  • Kobayashi N, Saeki K and Yuo A. 2003. Granulocyte-macrophage colony-stimulating factor and interleukin-3 induce cell cycle progression through the synthesis of c-Myc protein by internal ribosome entry site-mediated translation via phosphatidylinositol 3-kinase pathway in human factor-dependent leukemic cells. Blood 102:3186–3195.
  • Kochetov AV. 2005. AUG codons at the beginning of protein coding sequences are frequent in eukaryotic mRNAs with a suboptimal start codon context. Bioinformatics 21:837–840.
  • Konarska M, Filipowicz W, Domdey H and Gross HJ. 1981. Binding of ribosomes to linear and circular forms of the 5’-terminal leader fragment of tobacco-mosaic-virus RNA. Eur J Biochem 114:221–227.
  • Kozak M. 1979. Inability of circular mRNA to attach to eukaryotic ribosomes. Nature 280:82–85.
  • Kozak M. 1980a. Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19:79–90.
  • Kozak M. 1980b. Role of ATP in binding and migration of 40S ribosomal subunits. Cell 22:459–467.
  • Kozak M. 1986a. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA 83:2850–2854.
  • Kozak M. 1986b. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292.
  • Kozak M. 1987b. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950.
  • Kozak M. 1987b. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol 7:3438–3445.
  • Kozak M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266:19867–19870.
  • Kozak M. 2002. Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34.
  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M and Rajewsky N. 2005. Combinatorial microRNA target predictions. Nat Genet 37:495–500.
  • Kriaucionis S and Bird A. 2004. The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res 32:1818–1823.
  • Kuge S and Nomoto A. 1987. Construction of viable deletion and insertion mutants of the Sabin strain of type 1 poliovirus: function of the 5’ noncoding sequence in viral replication. J Virol 61:1478–1487.
  • Kwiatkowski DJ and Manning BD. 2005. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14:R1–R8.
  • Kwon SJ, Choi EY, Choi YJ, Ahn JH and Park OK. 2006. Proteomics studies of post-translational modifications in plants. J Exp Bot 57:1547–1551.
  • Lahti JM, Xiang J and Kidd VJ. 1995. The PITSLRE protein kinase family, pp. 329–338. In: Meijer L, Guidet S and Tung HYL, eds Progress in Cell Cycle Research, Vol. 1. New York: Plenum Press.
  • Lang KJD, Kappel A and Goodall GJ. 2002. Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13:1792–1801.
  • Langland JO, Jin S, Jacobs BL and Roth DA. 1995. Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase. Plant Physiol 108:1259–1267.
  • Langland JO, Langland LA, Browning KS and Roth DA. 1996. Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J Biol Chem 271:4539–4544.
  • Lauring B, Kreibich G and Wiedmann M. 1995. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc Natl Acad Sci USA 92:9435–9439.
  • Law GL, Raney A, Heusner C and Morris DR. 2001. Polyamine regulation of ribosome pausing at the upstream open reading frame of S-adenosylmethionine decarboxylase. J Biol Chem 276:38036–38043.
  • Lawrence JC Jr and Abraham RT. 1997. PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22:345–349.
  • Lax S, Fritz W, Browning K and Ravel J. 1985. Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5’-triphosphate inhibition of polypeptide synthesis. Proc Natl Acad Sci USA 82:330–333.
  • Lax S, Browning KS, Maia DM and Ravel JM. 1986. ATPase activities of wheat germ initiation factors 4A, 4B, and 4F. J Biol Chem 261:15632–15636.
  • Le H, Tanguay RL, Balasta ML, Wei C-C, Browning KS, Metz AM, Goss DJ and Gallie DR. 1997. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272:16247–16255.
  • Le H, Browning KS and Gallie DR. 1998. The phosphorylation state of the wheat translation initiation factors eIF4B, eIF4A, and eIF2 is differentially regulated during seed development and germination. J Biol Chem 273:20084–20089.
  • Lee JH, Pestova TV, Shin B-S, Cao C, Choi SK and Dever TE. 2002. Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci USA 99:16689–16694.
  • Lee RC, Feinbaum RL and Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854.
  • Lee Y, Kim E-S, Choi Y, Hwang I, Staiger CJ, Chung Y-Y and Lee Y. 2008. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol 147:1886–1897.
  • Leissring MA, Farris W, Wu X, Christodoulou DC, Haigis MC, Guarente L and Selkoe DJ. 2004. Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem J 383:439–446.
  • Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R and Sonenberg N. 1992. A fraction of the mRNA 5’ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc Natl Acad Sci USA 89:9612–9616.
  • Lewis BP, Burge CB and Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNAs targets. Cell 120:15–20.
  • Li P and McLeod M. 1996. Molecular mimicry in development: identification of ste11+ as a substrate and mei3+ as a pseudosubstrate inhibitor of ran1+ kinase. Cell 87:869–880.
  • Li Q, Imataka H, Morino S, Rogers GW Jr, Richter-Cook NJ, Merrick WC and Sonenberg N. 1999. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol Cell Biol 19:7336–7346.
  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773.
  • Linder P and Slonimski PP. 1989. An essential yeast protein, encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc Natl Acad Sci USA 86:2286–2290.
  • Liu Y, Garceau NY, Loros JJ and Dunlap JC. 1997. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock. Cell 89:477–486.
  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K and Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Curr Biol 15:702–713.
  • Luitjens C, Gallegos M, Kraemer B, Kimble J and Wickens M. 2000. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev 14:2596–2609.
  • Lukaszewicz M, Feuermann M, Jérouville B, Stas A and Boutry M. 2000. In vivo evaluation of the context sequence of the translation initiation codon in plants. Plant Sci 154:89–98.
  • Luo Y and Goss DJ. 2001. Homeostasis in mRNA initiation. Wheat germ poly(A)-binding protein lowers the activation energy barrier to initiation complex formation. J Biol Chem 276:43083–43086.
  • Maag D, Algire MA and Lorsch JR. 2006. Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection. J Mol Biol 356:724–737.
  • Maag D, Fekete CA, Gryczynski Z and Lorsch JR. 2005. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol Cell 17:265–275.
  • Macejak DG and Sarnow P. 1991. Internal initiation of translation mediated by the 5’ leader of a cellular mRNA. Nature 353:90–94.
  • Mader S, Lee H, Pause A and Sonenberg N. 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997.
  • Mahfouz MM, Kim S, Delauney AJ and Verma DPS. 2006. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18:477–490.
  • Mangus DA, Evans MC and Jacobson A. 2003. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4:223.
  • Mann M and Jensen ON. 2003. Proteomic analysis of post- translational modifications. Nat Biotechnol 21:255–261.
  • Marcotrigiano J, Gingras A-C, Sonenberg N and Burley SK. 1997. Cocrystal structure of the messenger RNA 5’ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961.
  • Marcotrigiano J, Gingras A-C, Sonenberg N and Burley SK. 1999. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3:707–716.
  • Mardanova ES, Zamchuk LA and Ravin NV. 2007. The 5’-untranslated region of the maize alcohol dehydrogenase gene provides efficient translation of mRNA in plants under stress conditions. Mol Biol 41:914–919.
  • Mardanova ES, Zamchuk LA, Skulachev MV and Ravin NV. 2008. The 5’ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene 420:11–16.
  • Marr MT II, D’Alessio JA, Puig O and Tjian R. 2007. IRES-mediated functional coupling of transcription and translation amplifies insulin receptor feedback. Genes Dev 21:175–183.
  • Mathews MB, Sonenberg N and Hershey JWB. 2000. Origins and principles of translational control, pp. 1–31. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression, (Cold Spring Harbor Monograph Series, Vol. 39 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Mayer C, Zhao J, Yuan X and Grummt I. 2004. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18:423–434.
  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C and Robaglia C. 2002. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427.
  • Mendez R and Richter JD. 2001. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2:521–529.
  • Méthot N, Song MS and Sonenberg N. 1996. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol 16:5328–5334.
  • Metz AM and Browning KS. 1993. Sequence of cDNA encoding wheat eukaryotic protein synthesis initiation factor 4A. Gene 131:299–300.
  • Metz AM, Timmer RT and Browning KS. 1992. Sequences for two cDNAs encoding Arabidopsis thaliana eukaryotic protein synthesis initiation factor 4A. Gene 120:313–314.
  • Meyuhas O and Hornstein E. 2000. Translational control of TOP mRNAs, pp. 671–693. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression (Cold Spring Harbor Monograph Series, Vol. 39 ). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Mikulits W, Pradet-Balade B, Habermann B, Beug H, Garcia-Sanz JA and Müllner EW. 2000. Isolation of translationally controlled mRNAs by differential screening. FASEB J 14:1641–1652.
  • Miron M, Verdù J, Lachance PED, Birnbaum MJ, Lasko PF and Sonenberg N. 2001. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nat Cell Biol 3:596–601.
  • Montine KS and Henshaw EC. 1989. Serum growth factors cause rapid stimulation of protein synthesis and dephosphorylation of eIF-2 in serum deprived Ehrlich cells. Biochim Biophys Acta 1014:282–288.
  • Morley SJ and McKendrick L. 1997. Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J Biol Chem 272:17887–17893.
  • Müllner EW and Garcia-Sanz JA. 1997. Polysome gradients, pp. 457–462. In: Lefkovits I, ed. Immunological Methods Manual, Vol. 1. London: Academic Press.
  • Nakagawa S, Niimura Y, Gojobori T, Tanaka H and Miura K-i. 2008. Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res 36:861–871.
  • Nanbru C, Lafon I, Audigier S, Gensac M-C, Vagner S, Huez G and Prats A-C. 1997. Alternative translation of the proto- oncogene c-myc by an internal ribosome entry site. J Biol Chem 272:32061–32066.
  • Naranda T, MacMillan SE, Donahue TF and Hershey JWB. 1996. SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol Cell Biol 16:2307–2313.
  • Nasmyth K and Dirick L. 1991. The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 66:995–1013.
  • Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K-i, Hara K, Tanaka N, Avruch J and Yonezawa K. 2003. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motifs. J Biol Chem 278:15461–15464 [Err. J Biol Chem 278:26302].
  • O’Farrell PH. 2001. Triggering the all-or-nothing switch into mitosis. Trends Cell Biol 11:512–519.
  • Olsen PH and Ambros V. 1999. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216: 671–680.
  • Oshiro N, Yoshino K-i, Hidayat S, Tokunaga C, Hara K, Eguchi S, Avruch J and Yonezawa K. 2004. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9:359–366.
  • Owttrim GW, Mandel T, Trachsel H, Thomas AAM and Kuhlemeier C. 1994. Characterization of the tobacco eIF-4A gene family. Plant Mol Biol 26:1747–1757.
  • Pain VM. 1994. Translational control during amino acid starvation. Biochimie 76:718–728.
  • Palanivelu R, Belostotsky DA and Meagher RB. 2000. Conserved expression of Arabidopsis thaliana poly(A) binding protein 2 (PAB2) in distinct vegetative and reproductive tissues. Plant J 22:199–210.
  • Papst PJ, Sugiyama H, Nagasawa M, Lucas JJ, Maller JL and Terada N. 1998. Cdc2-cyclin B phosphorylates p70 S6 kinase on Ser411 at mitosis. J Biol Chem 273:15077–15084.
  • Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR and Ramakrishnan V. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26:41–50.
  • Pecqueur C, Alves-Guerra M-C, Gelly C, Lévi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F and Miroux B. 2001. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 276:8705–8712.
  • Pelletier J and Sonenberg N. 1987. The involvement of mRNA secondary structure in protein synthesis. Biochem Cell Biol 65:576–581.
  • Pelletier J and Sonenberg N. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325.
  • Pesole G, Gissi C, Grillo G, Licciulli F, Liuni S and Saccone C. 2000. Analysis of oligonucleotide AUG start codon context in eukariotic mRNAs. Gene 261:85–91.
  • Pestova TV, Borukhov SI and Hellen CUT. 1998. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–859.
  • Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE and Hellen CUT. 2000. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332–335.
  • Petersen CP, Bordeleau M-E, Pelletier J and Sharp PA. 2006. Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542.
  • Petretti C, Savoian M, Montembault E, Glover DM, Prigent C and Giet R. 2006. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep 7:418–424.
  • Petryshyn RA, Li J and Judware R. 1994. Activation of the dsRNA- dependent kinase, pp. 1–14. In: Müller WEG and Schröder HC, eds Progress in Molecular and Subcellular Biology, Vol. 14. Berlin: Springer-Verlag.
  • Phan L, Schoenfeld LW, Valášek L, Nielsen KH and Hinnebusch AG. 2001. A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNA;met. EMBO J 20:2954–2965.
  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E and Filipowicz W. 2005. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309:1573–1576.
  • Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CUT and Pestova TV. 2006. Specific functional interactions of nucleotides at key −3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev 20:624–636.
  • Pohjanpelto, P and Knuutila, S. 1982. Polyamine deprivation causes major chromosome aberrations in a polyamine-dependent Chinese hamster ovary cell line. Exp Cell Res 141:333–339.
  • Pohjanpelto P, Virtanen I and Hölttä E. 1981. Polyamine starvation causes disappearance of actin filaments and microtubules in polyamine-auxotrophic CHO cells. Nature 293:475–477.
  • Pollard KJ, Samuels ML, Crowley KA, Hansen JC and Peterson CL. 1999. Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J 18:5622–5633.
  • Polymenis M and Schmidt EV. 1997. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 11:2522–2531.
  • Potter CJ, Pedraza LG and Xu T. 2002. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4:658–665.
  • Powers T and Walter P. 1996. The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome. Curr Biol 6:331–338.
  • Preiss T and Hentze MW. 1999. From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev 9:515–521.
  • Prévôt D, Darlix J-L and Ohlmann T. 2003. Conducting the initiation of protein synthesis: the role of eIF4G. Biol Cell 95:141–156.
  • Ptushkina M, Fierro-Monti I, van den Heuvel J, Vasilescu S, Birkenhäger R, Mita K and McCarthy JEG. 1996. Schizosaccharomyces pombe has a novel eukaryotic initiation factor 4F complex containing a cap-binding protein with the human eIF4E C-terminal motif KSGST. J Biol Chem 271:32818–32824.
  • Ptushkina M, Berthelot K, von der Haar T, Geffers L, Warwicker J and McCarthy JEG. 2001. A second eIF4E protein in Schizosaccharomyces pombe has distinct eIF4G-binding properties. Nucleic Acids Res 29:4561–4569.
  • Ptushkina M, Malys N and McCarthy JEG. 2004. eIF4E isoform 2 in Schizosaccharomyces pombe is a novel stress-response factor. EMBO Rep 5:311–316.
  • Puig O and Tjian R. 2005. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev 19:2435–2446.
  • Puig O, Marr MT, Ruhf ML and Tjian R. 2003. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 17:2006–2020.
  • Pullen N and Thomas G. 1997. The modular phosphorylation and activation of p70s6k. FEBS Lett 410:78–82.
  • Pyronnet S and Sonenberg N. 2001. Cell-cycle-dependent translational control. Curr Opin Genet Dev 11:13–18.
  • Pyronnet S, Imataka H, Gingras A-C, Fukunaga R, Hunter T and Sonenberg N. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J 18:270–279.
  • Pyronnet S, Pradayrol L and Sonenberg N. 2000. A cell cycle- dependent internal ribosome entry site. Mol Cell 5:607–616.
  • Pyronnet S, Dostie J and Sonenberg N. 2001. Suppression of cap- dependent translation in mitosis. Genes Dev 15:2083–2093.
  • Qin X and Sarnow P. 2004. Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J Biol Chem 279:13721–13728.
  • Raught B, Peiretti F, Gingras A-C, Livingstone M, Shahbazian D, Mayeur GL, Polakiewicz RD, Sonenberg N and Hershey JWB. 2004. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23:1761–1769.
  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906.
  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B and Bartel DP. 2002. Prediction of plant microRNA targets. Cell 110:513–520.
  • Richter JD and Sonenberg N. 2005. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480.
  • Robaglia C, Menand B, Lei Y, Sormani R, Nicolaï M, Gery C, Teoulé E, Deprost D and Meyer C. 2004. Plant growth: the translational connection. Biochem Soc Trans 32:581–584.
  • Rogers GW Jr, Komar AA and Merrick WC. 2002. eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 72:307–331.
  • Rolfe M, McLeod LE, Pratt PF and Proud CG. 2005. Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochem J 388:973–984.
  • Rom E, Kim HC, Gingras A-C, Marcotrigiano J, Favre D, Olsen H, Burley SK and Sonenberg N. 1998. Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein. J Biol Chem 273:13104–13109.
  • Ron D and Harding HP. 2000. PERK and translational control by stress in the endoplasmic reticulum, pp. 547–560. In: Sonenberg N, Hershey JWB and Mathews MB, eds Translational Control of Gene Expression ( Cold Spring Harbor Monograph Series, Vol. 39). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Roux PP, Ballif BA, Anjum R, Gygi SP and Blenis J. 2004. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101:13489–13494.
  • Roy G, De Crescenzo G, Khaleghpour K, Kahvejian A, O’Connor-McCourt M and Sonenberg N. 2002. Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol Cell Biol 22:3769–3782.
  • Ruud KA, Kuhlow C, Goss DJ and Browning KS. 1998. Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J Biol Chem 273:10325–10330.
  • Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P and Meyuhas O. 2005. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19:2199–2211.
  • Sachs AB. 2000. Cell cycle-dependent translation initiation: IRES elements prevail. Cell 101:243–245.
  • Sachs AB, Davis RW and Kornberg RD. 1987. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol 7:3268–3276.
  • Sætrom P, Heale BSE, Snøve O Jr, Aagaard L, Alluin J and Rossi JJ. 2007. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35:2333–2342.
  • Sarbassov DD, Ali SM and Sabatini DM. 2005. Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603.
  • Sarnow P. 1989. Translation of glucose-regulated protein 78/immunoglobulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNA is inhibited. Proc Natl Acad Sci USA 86:5795–5799.
  • Schalm SS, Fingar DC, Sabatini DM and Blenis J. 2003. TOS motif-mediated raptor binding regulates 4E-BP1 multi-site phosphorylation and function. Curr Biol 13:797–806.
  • Scharff MD and Robbins E. 1966. Polyribosome disaggregation during metaphase. Science 151:992–995.
  • Schepens B, Tinton SA, Bruynooghe Y, Parthoens E, Haegman M, Beyaert R and Cornelis S. 2007. A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J 26:158–169.
  • Scheper GC, Morrice NA, Kleijn M and Proud CG. 2001. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol 21:743–754.
  • Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ, Zavolan M, Svoboda P and Filipowicz W. 2006. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res 34:4801–4815.
  • Schwartz S, Felber BK and Pavlakis GN. 1992. Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 12:207–219.
  • Seggerson K, Tang L and Moss EG. 2002. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translational initiation. Dev Biol 243: 215–225.
  • Seo J and Lee K-J. 2004. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37:35–44.
  • Shah OJ, Ghosh S and Hunter T. 2003. Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2. J Biol Chem 278:16433–16442.
  • Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J, Hershey JWB, Blenis J, Pende M and Sonenberg N. 2006. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25:2781–2791.
  • Shenberger JS, Myers JL, Zimmer SG, Powel RJ and Barchowsky A. 2005. Hyperoxia alters the expression and phosphorylation of multiple factors regulating translation initiation. Am J Physiol Lung Cell Mol Physiol 288:L442–L449.
  • Shimada T, Yamashita A and Yamamoto M. 2003. The fission yeast meiotic regulator Mei2p forms a dot structure in the horse-tail nucleus in association with the sme2 locus on chromosome II. Mol Biol Cell 14:2461–2469.
  • Shinozaki-Yabana S, Watanabe Y and Yamamoto M. 2000. Novel WD-repeat protein Mip1p facilitates function of the meiotic regulator Mei2p in fission yeast. Mol Cell Biol 20:1234–1242.
  • Slusher LB, Gillman EC, Martin NC and Hopper AK. 1991. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc Natl Acad Sci USA 88:9789–9793.
  • Smith EM, Finn SG, Tee AR, Browne GJ and Proud CG. 2005. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280:18717–18727.
  • Sonenberg N and Gingras A-C. 1998. The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10:268–275.
  • Sonenberg N, Rupprecht KM, Hecht SM and Shatkin AJ. 1979. Eukaryotic mRNA cap binding protein: purification by affinity chromatography on Sepharose-coupled m7GDP. Proc Natl Acad Sci USA 76:4345–4349.
  • Sood R, Porter AC, Olsen D, Cavener DR and Wek RC. 2000. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α. Genetics 154:787–801.
  • Spotts GD, Patel SV, Xiao Q and Hann SR. 1997. Identification of downstream-initiated c-Myc proteins which are dominant- negative inhibitors of transactivation by full-length c-Myc proteins. Mol Cell Biol 17:1459–1468.
  • Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R and Richter JD. 1999. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol Cell 4:1017–1027.
  • Stein I, Itin A, Einat P, Skaliter R, Grossman Z and Keshet E. 1998. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18:3112–3119.
  • Stoneley M, Paulin FEM, Le Quesne JPC, Chappell SA and Willis AE. 1998. c-Myc 5’ untranslated region contains an internal ribosome entry segment. Oncogene 16:423–428.
  • Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M and Willis AE. 2000. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol 20:1162–1169.
  • Sunkara PS, Rao PN, Nishioka K and Brinkley BR. 1979. Role of polyamines in cytokinesis of mammalian cells. Exp Cell Res 119:63–68.
  • Svitkin YV, Maslova SV and Agol VI. 1985. The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 147:243–252.
  • Tabor CW and Tabor H. 1984. Polyamines. Annu Rev Biochem 53:749–790.
  • Tamemoto H, Kadowaki T, Tobe K, Ueki K, Izumi T, Chatani Y, Kohno M, Kasuga M, Yazaki Y and Akanuma Y. 1992. Biphasic activation of two mitogen-activated protein kinases during the cell cycle in mammalian cells. J Biol Chem 267:20293–20297.
  • Tang G. 2005. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114.
  • Tarnowka MA and Baglioni C. 1979. Regulation of protein synthesis in mitotic HeLa cells. J Cell Physiol 99:359–367.
  • Tarun SZ Jr and Sachs AB. 1995. A common function for mRNA 5’ and 3’ ends in translation initiation in yeast. Genes Dev 9:2997–3007.
  • Tarun SZ Jr and Sachs AB. 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15:7168–7177.
  • Tarun SZ Jr, Wells SE, Deardorff JA and Sachs AB. 1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci USA 94:9046–9051.
  • Tay Y, Zhang J, Thomson AM, Lim B and Rigoutsos I. 2008. MicroRNAs to Nanog, Oct4 and Sox 2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128.
  • Tew KD, Monks A, Barone L, Rosser D, Akerman G, Montali JA, Wheatley JB and Schmidt DE Jr. 1996. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol Pharmacol 50:149–159.
  • Thomas G and Hall MN. 1997. TOR signalling and control of cell growth. Curr Opin Cell Biol 9:782–787.
  • Thornton S, Anand N, Purcell D and Lee J. 2003. Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med 81:536–548.
  • Tinton SA, Schepens B, Bruynooghe Y, Beyaert R and Cornelis S. 2005. Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2α. Biochem J 385:155–163.
  • Trembley JH, Hu D, Hsu L-C, Yeung C-Y, Slaughter C, Lahti JM and Kidd VJ. 2002. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity. J Biol Chem 277:2589–2596.
  • Trono D, Andino R and Baltimore D. 1988. An RNA sequence of hundreds of nucleotides at the 5’ end of poliovirus RNA is involved in allowing viral protein synthesis. J Virol 62:2291–2299.
  • Tschopp C, Knauf U, Brauchle M, Zurini M, Ramage P, Glueck D, New L, Han J and Gram H. 2000. Phosphorylation of eIF-4E on Ser 209 in response to mitogenic and inflammatory stimuli is faithfully detected by specific antibodies. Mol Cell Biol Res Commun 3:205–211.
  • Tyers M, Tokiwa G and Futcher B. 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 12:1955–1968.
  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S and Fukunaga R. 2004. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24:6539–6549.
  • Unbehaun A, Borukhov SI, Hellen CUT and Pestova TV. 2004. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon- anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev 18:3078–3093.
  • Valášek L, Nielsen KH, Zhang F, Fekete CA and Hinnebusch AG. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol Cell Biol 24:9437–9455.
  • Vanderhaeghen R, De Clercq R, Karimi M, Van Montagu M, Hilson P and Van Lijsebettens M. 2006. Leader sequence of a plant ribosomal protein gene with complementarity to the 18S rRNA triggers in vitro cap-independent translation. FEBS Lett 580:2630–2636.
  • Vattem KM and Wek RC. 2004. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274.
  • Vorburger SA, Pataer A, Yoshida K, Barber GN, Xia W, Chiao P, Ellis LM, Hung M-C, Swisher SG and Hunt KK. 2002. Role for the double-stranded RNA-activated protein kinase PKR in E2F-1-induced apoptosis. Oncogene 21:6278–6288.
  • Vornlocher H-P, Hanachi P, Ribeiro S and Hershey JWB. 1999. A 110-kilodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. J Biol Chem 274:16802–16812.
  • Wang X, Flynn A, Waskiewicz AJ, Webb BLJ, Vries RG, Baines IA, Cooper JA and Proud CG. 1998. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 273:9373–9377.
  • Wang X, Beugnet A, Murakami M, Yamanaka S and Proud CG. 2005. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 25:2558–2572.
  • Waskiewicz AJ, Flynn A, Proud CG and Cooper JA. 1997. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:1909–1920.
  • Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR and Cooper JA. 1999. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19:1871–1880.
  • Watanabe Y and Yamamoto M. 1994. S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78:487–498.
  • Watanabe Y, Iino Y, Furuhata K, Shimoda C and Yamamoto M. 1988. The S. pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J 7:761–767.
  • Watanabe Y, Shinozaki-Yabana S, Chikashige Y, Hiraoka Y and Yamamoto M. 1997. Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386:187–190.
  • Wei C-C, Balasta ML, Ren J and Goss DJ. 1998. Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues. Biochemistry 37:1910–1916.
  • Wek RC. 1994. eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem Sci 19:491–496.
  • Wells SE, Hillner PE, Vale RD and Sachs AB. 1998. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2:135–140.
  • Welsh GI and Proud CG. 1993. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J 294:625–629.
  • Welters P, Takegawa K, Emr SD and Chrispeels MJ. 1994. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91:11398–11402.
  • Wiedmann B, Sakai H, Davis TA and Wiedmann M. 1994. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370:434–440.
  • Wilker EW, van Vugt MATM, Artim SC, Huang PH, Petersen CP, Reinhardt HC, Feng Y, Sharp PA, Sonenberg N, White FM and Yaffe MB. 2007. 14-3-3σ controls mitotic translation to facilitate cytokinesis. Nature 446:329–332.
  • Wright JH, Munar E, Jameson DR, Andreassen PR, Margolis RL, Seger R and Krebs EG. 1999. Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts. Proc Natl Acad Sci USA 96:11335–11340.
  • Wu L, Fan J and Belasco JG. 2006. microRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039.
  • Wullschleger S, Loewith R and Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471–484.
  • Yamashita A, Watanabe Y, Nukina N and Yamamoto M. 1998. RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell 95:115–123.
  • Yueh A and Schneider RJ. 1996. Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev 10:1557–1567.
  • Zamanian-Daryoush M, Der SD and Williams BRG. 1999. Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene 18:315–326.
  • Zetterberg A and Larsson O. 1985. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci USA 82:5365–5369.
  • Zetterberg A, Larsson O and Wiman KG. 1995. What is the restriction point? Curr Opin Cell Biol 7:835–842.
  • Zhang Y, Wang Y, Kanyuka K, Parry MAJ, Powers SJ and Halford NG. 2008. GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. J Exp Bot 59:3131–3141.
  • Zong Q, Schummer M, Hood L and Morris DR. 1999. Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc Natl Acad Sci USA 96:10632–10636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.