227
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Insights into the metabolism, signaling, and physiological effects of 2’,3’-cyclic nucleotide monophosphates in bacteria

&
Pages 118-131 | Received 06 Oct 2023, Accepted 20 Nov 2023, Published online: 08 Dec 2023

References

  • Abel S, Nürnberger T, Ahnert V, Krauss GJ, Glund K. 2000. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol. 122(2):543–552. doi:10.1104/pp.122.2.543.
  • Akanuma G, Yamazaki K, Yagishi Y, Iizuka Y, Ishizuka M, Kawamura F, Kato-Yamada Y. 2018. Magnesium suppresses defects in the formation of 70S ribosomes as well as in sporulation caused by lack of several individual ribosomal proteins. J Bacteriol. 200(18):e00212–18. doi:10.1128/JB.00212-18.
  • Anderson BW, Fung DK, Wang JD. 2021. Regulatory themes and variations by the stress-signaling nucleotide alarmones (p)ppGpp in bacteria. Annu Rev Genet. 55(1):115–133. doi:10.1146/annurev-genet-021821-025827.
  • Anraku Y, Mizuno D. 1967. Ribonuclease-cyclic phosphodiesterase system in Escherichia coli. J Biochem. 61(1):81–88. doi:10.1093/oxfordjournals.jbchem.a128523.
  • Apura P, Gonçalves LG, Viegas SC, Arraiano CM. 2021. The world of ribonucleases from pseudomonads: a short trip through the main features and singularities. Microb Biotechnol. 14(6):2316–2333. doi:10.1111/1751-7915.13890.
  • Arn EA, Abelson JN. 1996. The 2’-5’ RNA ligase of escherichia coli. Purification, cloning, and genomic disruption. J Biol Chem. 271(49):31145–31153. doi:10.1074/jbc.271.49.31145.
  • Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, Evtodienko Y, Reiser G. 2009. Ca 2+ -dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Am J Physiol Cell Physiol. 296(6):C1428–C1439. doi:10.1152/ajpcell.00006.2009.
  • Bähre H, Kaever V. 2014. Measurement of 2’,3’-cyclic nucleotides by liquid chromatography-tandem mass spectrometry in cells. J Chromatogr B Analyt Technol Biomed Life Sci. 964:208–211. doi:10.1016/j.jchromb.2014.02.046.
  • Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF. 2011. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. Embo J. 30(22):4616–4627. doi:10.1038/EMBOJ.2011.377.
  • Beppu T, Arima K. 1969. Induction by mercuric ion of extensive degradation of cellular ribonucleic acid in Escherichia coli. J Bacteriol. 98(3):888–897. doi:10.1128/jb.98.3.888-897.1969.
  • Bhatti AR, DeVoe IW, Ingram JM. 1976. The release and characterization of some periplasm located enzymes of Pseudomonas aeruginosa. Can J Microbiol. 22(10):1425–1429. doi:10.1139/m76-211.
  • Bordeleau E, Oberc C, Ameen E, da Silva AM, Yan H. 2014. Identification of cytidine 2′,3′-cyclic monophosphate and uridine 2′,3′-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorg Med Chem Lett. 24(18):4520–4522. doi:10.1016/j.bmcl.2014.07.080.
  • Boutte CC, Crosson S. 2013. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 21(4):174–180. doi:10.1016/j.tim.2013.01.002.
  • Braun F, Recalde A, Bähre H, Seifert R, Albers S-V. 2021. Putative nucleotide-based second messengers in the archaeal model organisms haloferax volcanii and sulfolobus acidocaldarius. Front Microbiol. 12:779012. doi:10.3389/fmicb.2021.779012.
  • Burhenne H, Tschirner S, Seifert R, Kaever V. 2013. Identification and quantitation of 2’,3’-cGMP in murine tissues. BMC Pharmacol Toxicol. 14(S1):P12. doi:10.1186/2050-6511-14-S1-P12.
  • Cabezas A, Costas MJ, Canales J, Pinto RM, Rodrigues JR, Ribeiro JM, Cameselle JC. 2022. Enzyme characterization of pro-virulent SntA, a cell wall-anchored protein of streptococcus suis, with phosphodiesterase activity on cyclic-di-amp at a level suited to limit the innate immune system. Front Microbiol. 13(March):843068. doi:10.3389/fmicb.2022.843068.
  • Cammack KA, Wade HE. 1965. The sedimentation behaviour of ribonuclease-active and -inactive ribosomes from bacteria. Biochem J. 96(3):671–680. doi:10.1042/BJ0960671.
  • Cannistraro VJ, Kennell D. 1991. RNase I*, a form of RNase I, and mRNA degradation in Escherichia coli. J Bacteriol. 173(15):4653–4659. doi:10.1128/jb.173.15.4653-4659.1991.
  • Chauhan SS, Marotta NJ, Karls AC, Weinert EE. 2022. Binding of 2′,3′-Cyclic Nucleotide Monophosphates to Bacterial Ribosomes Inhibits Translation. ACS Cent Sci. 8(11):1518–1526. doi:10.1021/acscentsci.2c00681.
  • Chauhan SS, Weinert EE. 2023. Generation of nucleotide-linked resins for identification of novel binding proteins. Methods Enzymol. 679:323–330. doi:10.1016/bs.mie.2022.08.052.
  • Chodasiewicz M, Kerber O, Gorka M, Moreno JC, Maruri-Lopez I, Minen RI, Sampathkumar A, Nelson ADL, Skirycz A. 2022. 2′,3′-cAMP treatment mimics the stress molecular response in Arabidopsis thaliana. Plant Physiol. 188(4):1966–1978. doi:10.1093/plphys/kiac013.
  • Clouet-d’Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier L-K. 2018. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev. 42(5):579–613. doi:10.1093/femsre/fuy016.
  • Van Damme T, Blancquaert D, Couturon P, Van Der Straeten D, Sandra P, Lynen F. 2014. Wounding stress causes rapid increase in concentration of the naturally occurring 2′,3′-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry. 103:59–66. doi:10.1016/j.phytochem.2014.03.013.
  • Van Damme T, Zhang Y, Lynen F, Sandra P. 2012. Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography–triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 909:14–21. doi:10.1016/j.jchromb.2012.10.002.
  • Denninger JW, Marletta MA. 1999. Guanylate cyclase and the ⋅NO/cGMP signaling pathway. Biochim Biophys Acta. 1411(2-3):334–350. doi:10.1016/s0005-2728(99)00024-9.
  • Deshpande RA, Shankar V. 2002. Ribonucleases from T2 Family. Crit Rev Microbiol. 28(2):79–122. doi:10.1080/1040-840291046704.
  • Diez S, Ryu J, Caban K, Gonzalez RL, Jr., Dworkin J. 2020. The alarmones (p)ppGpp directly regulate translation initiation during entry into quiescence. Proc Natl Acad Sci U S A. 117(27):15565–15572. doi:10.1073/pnas.1920013117.
  • Duggal Y, Fontaine BM, Dailey DM, Ning G, Weinert EE. 2020. RNase I Modulates Escherichia coli Motility, Metabolism, and Resistance. ACS Chem Biol. 15(7):1996–2004. doi:10.1021/acschembio.0c00390.
  • Duggal Y, Kurasz JE, Fontaine BM, Marotta NJ, Chauhan SS, Karls AC, Weinert EE. 2022. Cellular effects of 2′,3′-cyclic nucleotide monophosphates in gram-negative bacteria.O’Toole G, editor. J Bacteriol. 204(1):e0020821. doi:10.1128/JB.00208-21.
  • Fontaine BM, Martin KS, Garcia-Rodriguez JM, Jung C, Briggs L, Southwell JE, Jia X, Weinert EE. 2018. RNase I regulates Escherichia coli 2′,3′-cyclic nucleotide monophosphate levels and biofilm formation. Biochem J. 475(8):1491–1506. doi:10.1042/BCJ20170906.
  • Genschik P, Drabikowski K, Filipowicz W. 1998. Characterization of the Escherichia coli RNA 3’-terminal phosphate cyclase and its σ54-regulated operon. J Biol Chem. 273(39):25516–25526. doi:10.1074/jbc.273.39.25516.
  • Girard ME, Gopalkrishnan S, Grace ED, Halliday JA, Gourse RL, Herman C. 2018. DksA and ppGpp regulate the sigma(S) stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. J Bacteriol. 200(2):e00463–17. doi:10.1128/JB.00463-17.
  • Goodman HL, Kroon JTM, Tom DFA, Hamilton JMU, Alqarni AO, Chivasa S. 2022. Extracellular ATP targets Arabidopsis RIBONUCLEASE 1 to suppress mycotoxin stress-induced cell death. New Phytol. 235(4):1531–1542. doi:10.1111/nph.18211.
  • Greulich W, Wagner M, Gaidt MM, Stafford C, Cheng Y, Linder A, Carell T, Hornung V. 2019. TLR8 is a sensor of RNase T2 degradation products. Cell. 179(6):1264–1275.e13. doi:10.1016/j.cell.2019.11.001.
  • Grünberg S, Coxam B, Chen TH, Dai N, Saleh L, Corrêa IR, Nichols NM, Yigit E. 2021. E. coli RNase I exhibits a strong Ca2+-dependent inherent double-stranded RNase activity. Nucleic Acids Res. 49(9):5265–5277. doi:10.1093/NAR/GKAB284.
  • Hammann C, Luptak A, Perreault J, De La Peña M. 2012. The ubiquitous hammerhead ribozyme. RNA. 18(5):871–885. doi:10.1261/rna.031401.111.
  • Harms A, Brodersen DE, Mitarai N, Gerdes K. 2018. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell. 70(5):768–784. doi:10.1016/j.molcel.2018.01.003.
  • Hengge R. 2009. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 7(4):263–273. doi:10.1038/nrmicro2109.
  • Hengge R. 2021. High-specificity local and global c-di-GMP signaling. Trends Microbiol. 29(11):993–1003. doi:10.1016/j.tim.2021.02.003.
  • Hiniker A, Bardwell JCA. 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem. 279(13):12967–12973. doi:10.1074/jbc.M311391200.
  • Hughes KJ, Chen X, Burroughs AM, Aravind L, Wolin SL. 2020. An RNA repair operon regulated by damaged tRNAs. Cell Rep. 33(12):108527. doi:10.1016/j.celrep.2020.108527.
  • Hulscher RM. 2017. Structural changes in the E. coli ribosome during assembly and cellular stress Johns Hopkins University. http://jhir.library.jhu.edu/handle/1774.2/60234
  • Irving SE, Choudhury NR, Corrigan RM. 2021. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol. 19(4):256–271. doi:10.1038/s41579-020-00470-y.
  • Jackson EK. 2011. The 2’,3’-cAMP-adenosine pathway. Am J Physiol Renal Physiol. 301(6):F1160–1167. doi:10.1152/ajprenal.00450.2011.
  • Jackson EK. 2015. Discovery and Roles of 2′,3′-cAMP in Biological Systems. In: Seifert R, editor. Non-canonical cyclic nucleotides. Vol. 238. New York: Springer New York LLC. p. 229–252. doi:10.1007/164_2015_40.
  • Jackson EK, Menshikova EV, Mi Z, Verrier JD, Bansal R, Janesko-Feldman K, Jackson TC, Kochanek PM. 2016. Renal 2 ‘,3 ‘-Cyclic Nucleotide 3 ‘-phosphodiesterase is an important determinant of AKI severity after ischemia-reperfusion. J Am Soc Nephrol. 27(7):2069–2081. doi:10.1681/ASN.2015040397.
  • Jackson EK, Mi Z, Janesko-Feldman K, Jackson TC, Kochanek PM. 2019. 2′,3′-cGMP exists in vivo and comprises a 2′,3′-cGMP-guanosine pathway. Am J Physiol Regul Integr Comp Physiol. 316(6):R783–R790. doi:10.1152/ajpregu.00401.2018.
  • Jackson EK, Ren J, Mi ZC. 2009. Extracellular 2 ‘,3 ‘-cAMP is a source of adenosine. J Biol Chem. 284(48):33097–33106. doi:10.1074/jbc.M109.053876.
  • Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 15(5):271–284. doi:10.1038/nrmicro.2016.190.
  • Jia X, Fontaine B, Strobel F, Weinert E. 2014. A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2’,3’-cIMP. Biomolecules. 4(4):1070–1092. doi:10.3390/biom4041070.
  • Jung S, von Thülen T, Yang I, Laukemper V, Rupf B, Janga H, Panagiotidis G-D, Schoen A, Nicolai M, Schulte LN, et al. 2020. A ribosomal RNA fragment with 2’,3’-cyclic phosphate and GTP-binding activity acts as RIG-I ligand. Nucleic Acids Res. 48(18):10397–10412. doi:10.1093/nar/gkaa739.
  • Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo YL, Guo M, Roembke BT, Sintim HO. 2013. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev. 42(1):305–341. doi:10.1039/c2cs35206k.
  • Keppetipola N, Shuman S. 2008. A Phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2,3-Cyclic nucleotide phosphodiesterase activity. *J Biol Chem. 283(45):30942–30949. doi:10.1074/jbc.M805064200.
  • Kosmacz M, Luzarowski M, Kerber O, Leniak E, Gutiérrez-Beltrán E, Moreno JC, Gorka M, Szlachetko J, Veyel D, Graf A, et al. 2018. Interaction of 2’,3’-cAMP with Rbp47b Plays a Role in Stress Granule Formation. Plant Physiol. 177(1):411–421. doi:10.1104/pp.18.00285.
  • Kurylo CM, Alexander N, Dass RA, Parks MM, Altman RA, Vincent CT, Mason CE, Blanchard SC. 2016. Genome sequence and analysis of escherichia coli mre600, a colicinogenic, nonmotile strain that lacks RNase I and the type I methyltransferase, EcoKI. Genome Biol Evol. 8(3):742–752. accessed 2021 Nov 7. doi:10.1093/GBE/EVW008.
  • Lee J, Lee M, Lee K. 2021. Trans-acting regulators of ribonuclease activity. J Microbiol. 59(4):341–359. doi:10.1007/s12275-021-0650-6.
  • Litt M. 1962. The pH-rate profile of the ribonuclease-catalysed hydrolysis of cytidine 2′,3′-cyclic phosphate. Biochim Biophys Acta. 60(3):644–645. doi:10.1016/0006-3002(62)90884-3.
  • Liu A, Yu Y, Sheng Q, Zheng X-Y, Yang J-Y, Li P-Y, Shi M, Zhou B-C, Zhang Y-Z, Chen X-L. 2016. Identification of four kinds of 2′,3′-cNMPs in Escherichia coli and a method for their preparation. ACS Chem Biol. 11(9):2414–2419. doi:10.1021/acschembio.6b00426.
  • Liu X, Cao B, Yang L, Gu JD. 2022. Biofilm control by interfering with c-di-GMP metabolism and signaling. Biotechnol Adv. 56:107915. doi:10.1016/j.biotechadv.2022.107915.
  • López-Villamizar I, Cabezas A, Pinto RM, Canales J, Ribeiro JM, Cameselle JC, Costas MJ. 2016. The characterization of escherichia coli CpdB as a Recombinant protein reveals that, besides having the expected 3’-Nucleotidase and 2’,3’-cyclic mononucleotide phosphodiesterase activities, it is also active as cyclic dinucleotide phosphodiesterase. Stevenson B, editor. PLoS One. 11(6):e0157308. doi:10.1371/journal.pone.0157308.
  • López-Villamizar I, Cabezas A, Pinto RM, Canales J, Ribeiro JM, Rodrigues JR, Costas MJ, Cameselle JC. 2021. Molecular dissection of escherichia coli cpdb: roles of the n domain in catalysis and phosphate inhibition, and of the c domain in substrate specificity and adenosine inhibition. Int J Mol Sci. 22(4):1977. doi:10.3390/ijms22041977.
  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA. 2000. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 52(3):375–414. http://www.ncbi.nlm.nih.gov/pubmed/10977868.
  • Mathieu-Demazière C, Poinsot V, Masson-Boivin C, Garnerone A-M, Batut J. 2013. Biochemical and functional characterization of SpdA, a 2’, 3’ cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti. BMC Microbiol. 13(1):268. doi:10.1186/1471-2180-13-268.
  • McDowell JR, Bai G, Lasek‐Nesselquist E, Eisele LE, Wu Y, Hurteau G, Johnson R, Bai Y, Chen Y, Chan J, et al. 2023. Mycobacterial phosphodiesterase Rv0805 is a virulence determinant and its cyclic nucleotide hydrolytic activity is required for propionate detoxification. Mol Microbiol. 119(4):401–422. doi:10.1111/mmi.15030.
  • Meador J, Cannon B, Cannistraro VJ, Kennell D. 1990. Purification and characterization of Escherichia coli RNase I. Comparisons with RNase M. Eur J Biochem. 187(3):549–553. doi:10.1111/j.1432-1033.1990.tb15336.x.
  • Megel C, Hummel G, Lalande S, Ubrig E, Cognat V, Morelle G, Salinas-Giegé T, Duchêne A-M, Maréchal-Drouard L. 2019. Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis. Nucleic Acids Res. 47(2):941–952. doi:10.1093/nar/gky1156.
  • Meier K. 2017. Cyclic nucleotide signaling in Arabidopsis thaliana and the identification of cGMP binding proteins. Technische Universität München. https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170308-1327135-1-5
  • Messens J, Collet JF, Van Belle K, Brosens E, Loris R, Wyns L. 2007. The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem. 282(43):31302–31307. doi:10.1074/jbc.M705236200.
  • Milon P, Tischenko E, Tomsic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO. 2006. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci U S A. 103(38):13962–13967. doi:10.1073/pnas.0606384103.
  • Mitkevich VA, Ermakov A, Kulikova AA, Tankov S, Shyp V, Soosaar A, Tenson T, Makarov AA, Ehrenberg M, Hauryliuk V. 2010. Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. J Mol Biol. 402(5):838–846. doi:10.1016/j.jmb.2010.08.016.
  • Mitsutomi S, Akimitsu N, Sekimizu K, Kaito C. 2019. Identification of 2H phosphoesterase superfamily proteins with 2′-CPDase activity. Biochimie. 165:235–244. doi:10.1016/j.biochi.2019.08.008.
  • Neu HC. 1968. The 5′-Nucleotidases and Cyclic Phosphodiesterases (3′-Nucleotidases) of the Enterobacteriaceae. J Bacteriol. 95(5):1732–1737. doi:10.1128/jb.95.5.1732-1737.1968.
  • Neu HC, Heppel LA. 1964. The release of ribonuclease into the medium when escherichia coli cells are converted to spheroplasts. J Biol Chem. 239(11):3893–3900. doi:10.1016/s0021-9258(18)91220-2.
  • Nürnberger T, Abel S, Jost W, Glund K. 1990. Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation. Plant Physiol. 92(4):970–976. doi:10.1104/pp.92.4.970.
  • Ostendorf T, Zillinger T, Andryka K, Schlee-Guimaraes TM, Schmitz S, Marx S, Bayrak K, Linke R, Salgert S, Wegner J, et al. 2020. Immune sensing of synthetic, bacterial, and protozoan rna by toll-like receptor 8 requires coordinated processing by RNase T2 and RNase 2. Immunity. 52(4):591–605.e6. doi:10.1016/j.immuni.2020.03.009.
  • Pabst M, Grass J, Fischl R, Léonard R, Jin C, Hinterkörner G, Borth N, Altmann F. 2010. Nucleotide and nucleotide sugar analysis by liquid chromatography- electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal Chem. 82(23):9782–9788. doi:10.1021/ac101975k.
  • Pesavento C, Hengge R. 2009. Bacterial nucleotide-based second messengers. Curr Opin Microbiol. 12(2):170–176. doi:10.1016/j.mib.2009.01.007
  • Qvortrup K, Hultqvist LD, Nilsson M, Jakobsen TH, Jansen CU, Uhd J, Andersen JB, Nielsen TE, Givskov M, Tolker-Nielsen T. 2019. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Front Chem. 7:742. doi:10.3389/fchem.2019.00742.
  • Rall TW, Sutherland EW. 1958. Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem. 232(2):1065–1076. https://www.ncbi.nlm.nih.gov/pubmed/13549487. doi:10.1016/S0021-9258(19)77422-5.
  • Rao F, Qi Y, Murugan E, Pasunooti S, Ji Q. 2010. 2′,3′-cAMP hydrolysis by metal-dependent phosphodiesterases containing DHH, EAL, and HD domains is non-specific: implications for PDE screening. Biochem Biophys Res Commun. 398(3):500–505. doi:10.1016/j.bbrc.2010.06.107.
  • Remus BS, Jacewicz A, Shuman S. 2014. Structure and mechanism of E. coli RNA 2’,3’-cyclic phosphodiesterase. RNA. 20(11):1697–1705. doi:10.1261/rna.046797.114.
  • Ren J, Mi Z, Stewart NA, Jackson EK. 2009. Identification and Quantification of 2′,3′-cAMP Release by the Kidney. J Pharmacol Exp Ther. 328(3):855–865. doi:10.1124/jpet.108.146712.
  • Ribeiro JM, Canales J, Costas MJ, Cabezas A, Pinto RM, García-Díaz M, Martín-Cordero P, Cameselle JC. 2023. Genomic distribution of pro-virulent cpdb-like genes in eubacteria and comparison of the enzyme specificity of CpdB-like proteins from Salmonella enterica, Escherichia coli and Streptococcus suis. Int J Mol Sci. 24(4):4150. doi:10.3390/ijms24044150.
  • Richards H, Das S, Smith CJ, Pereira L, Geisbrecht A, Devitt NJ, Games DE, Van Geyschem J, Gareth Brenton A, Newton RP. 2002. Cyclic nucleotide content of tobacco BY-2 cells. Phytochemistry. 61(5):531–537. doi:10.1016/S0031-9422(02)00266-2.
  • Rojas AM, Ehrenberg M, Andersson SG, Kurland CG. 1984. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol Gen Genet. 197(1):36–45. doi:10.1007/BF00327920.
  • Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger. Microbiol Mol Biol Rev. 77(1):1–52. doi:10.1128/mmbr.00043-12.
  • Saitoh M, Green PJ, Lebrasseur ND, Macintosh GC, Pe MA. 2002. Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis : RNS1 as a marker for a JA-independent systemic signaling pathway. 29. doi:10.1046/j.1365-313x.2002.01223.x.
  • Sato S, Uchida T, Egami F. 1966. Action of ribonuclease T2 on 2′, 3′-cyclic nucleotides and related compounds. Arch Biochem Biophys. 115(1):48–52. doi:10.1016/S0003-9861(66)81036-6.
  • Shigematsu M, Morichika K, Kawamura T, Honda S, Kirino Y. 2019. Genome-wide identification of short 2’,3’-cyclic phosphate-containing RNAs and their regulation in aging. PLoS Genet. 15(11):e1008469. doi:10.1371/journal.pgen.1008469.
  • Sondermann H, Shikuma NJ, Yildiz FH. 2012. You’ve come a long way: c-di-GMP signaling. Curr Opin Microbiol. 15(2):140–146. doi:10.1016/j.mib.2011.12.008
  • Stone TW, Ceruti S, Abbracchio MP. 2009. Adenosine Receptors and Neurological Disease: neuroprotection and Neurodegeneration BT - Adenosine Receptors in Health and Disease. In: wilson CN, Mustafa SJ, editors. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 535–587. doi:10.1007/978-3-540-89615-9_17.
  • Sun S, He Z, Jiang P, Baral R, Pandelia M-E. 2022. Metal Dependence and functional diversity of type I Cas3 nucleases. Biochemistry. 61(5):327–338. doi:10.1021/acs.biochem.1c00779.
  • Sutherland EW, Rall TW. 1958. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem. 232(2):1077–1091. https://www.ncbi.nlm.nih.gov/pubmed/13549488. doi:10.1016/S0021-9258(19)77423-7.
  • Tanaka N, Shuman S. 2011. RtcB is the RNA ligase component of an Escherichia coli RNA repair operon. J Biol Chem. 286(10):7727–7731. doi:10.1074/jbc.C111.219022.
  • Trülzsch K, Roggenkamp A, Pelludat C, Rakin A, Jacobi CA, Heesemann J. 2001. Cloning and characterization of the gene encoding periplasmic 2′,3′-cyclic phosphodiesterase of Yersinia enterocolitica O:8. Microbiology. 147(Pt 1):203–213. doi:10.1099/00221287-147-1-203.
  • Verrier JD, Jackson TC, Bansal R, Kochanek PM, Puccio AM, Okonkwo DO, Jackson EK. 2012. The brain in vivo expresses the 2’,3’-cAMP-adenosine pathway. J Neurochem. 122(1):115–125. doi:10.1111/j.1471-4159.2012.07705.x.
  • Veyel D, Kierszniowska S, Kosmacz M, Sokolowska EM, Michaelis A, Luzarowski M, Szlachetko J, Willmitzer L, Skirycz A. 2017. System-wide detection of protein-small molecule complexes suggests extensive metabolite regulation in plants. Sci Rep. 7(1):42387. doi:10.1038/srep42387.
  • Wade HE. 1961. The autodegradation of ribonucleoprotein in Escherichia coli. Biochem J. 78(3):457–472. doi:10.1042/bj0780457.
  • Wade HE, Robinson HK. 1963. Absence of ribonuclease from the ribosomes of pseudomonas fluorescens. Nature. 200(4907):661–663. doi:10.1038/200661a0.
  • Wall M, Linkletter B, Williams D, Anne-Marie Lebuis, Hynes RC, Chin J. 1999. Rapid hydrolysis of 2’,3’-cAMP with a Cu(II) complex: effect of intramolecular hydrogen bonding on the basicity and reactivity of a metal-bound hydroxide. J. Am. Chem. Soc. 121(19):4710–4711. doi:10.1021/ja981227l.
  • Wang D, Qi J, Han W, Gao J-M, Horsman GP. 2020. Kanamycin-induced production of 2’,3’-cyclic AMP in Escherichia coli. Biochem Biophys Res Commun. 527(4):854–860. doi:10.1016/j.bbrc.2020.04.144.
  • Yakunin AF, Proudfoot M, Kuznetsova E, Savchenko A, Brown G, Arrowsmith CH, Edwards AM. 2004. The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2′,3′-cyclic phosphodiesterase, 2′-nucleotidase, and phosphatase activities. J Biol Chem. 279(35):36819–36827. doi:10.1074/jbc.M405120200.
  • Yu D, Song W, Tan EYJ, Liu L, Cao Y, Jirschitzka J, Li E, Logemann E, Xu C, Huang S, et al. 2022. TIR domains of plant immune receptors are 2′,3′-cAMP/cGMP synthetases mediating cell death. Cell. 185(13):2370–2386.e18. doi:10.1016/j.cell.2022.04.032.
  • Zambon A, Righi V, Parenti F, Libertini E, Rossi MC, Mucci A. 2019. Nucleoside 2 ‘,3 ‘-Cyclic monophosphates in aphanizomenon flos-aquae detected through nuclear magnetic resonance and mass spectrometry. J Agric Food Chem. 67(46):12780–12785. doi:10.1021/acs.jafc.9b05991.
  • Zaver SA, Woodward JJ. 2020. Cyclic dinucleotides at the forefront of innate immunity. Curr Opin Cell Biol. 63:49–56. doi:10.1016/j.ceb.2019.12.004.
  • Zhang Y, Agrebi R, Bellows LE, Collet J-F, Kaever V, Gründling A. 2017. Evolutionary Adaptation of the essential tRNA methyltransferase TrmD to the signaling molecule 3′,5′-cAMP in bacteria. J Biol Chem. 292(1):313–327. doi:10.1074/jbc.M116.758896.
  • Zhang Y, Zhang J, Hara H, Kato I, Inouye M. 2005. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J Biol Chem. 280(5):3143–3150. doi:10.1074/jbc.M411811200.
  • Zhu M, Pan Y, Dai X. 2019. (p)ppGpp: the magic governor of bacterial growth economy. Curr Genet. 65(5):1121–1125. doi:10.1007/s00294-019-00973-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.