Publication Cover
Ichnos
An International Journal for Plant and Animal Traces
Volume 30, 2023 - Issue 3
358
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative analysis of experimental trackways of scorpions, tarantulas, and crayfish

ORCID Icon &

References

  • Abbassi, N., & Mustoe, G. E. (2018). Jurassic arthropod tracks from northern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 508, 176–187. https://doi.org/10.1016/j.palaeo.2018.07.034
  • Alf, R. M. (1968). A spider trackway from the Coconino Formation, Seligman, Arizona. Bulletin of the Southern California Academy of Sciences, 67(2), 125–128. http://scholar.oxy.edu/scas/vol67/iss2/9/
  • Azain, J. S. (2006). The effect of temperature and slope on the morphology of experimental spider and scorpion trackways [PhD dissertation], University of Colorado at Denver. https://digital.auraria.edu/work/ns/4cfeb159-a5a4-46c1-908c-8145e80f0450
  • Braddy, S. J. (1995). The ichnotaxonomy of the invertebrate trackways of the Coconino Sandstone (Lower Permian), northern Arizona. New Mexico Museum of Natural History and Science Bulletin, 6, 219–224.
  • Brady, L. F. (1939). Tracks in the Coconino Sandstone compared with those of small living arthropods. Plateau, 12(2), 32–34.
  • Brady, L. F. (1947). Invertebrate tracks from the Coconino Sandstone of northern Arizona. Journal of Paleontology, 21(5), 466–472. http://www.jstor.org/stable/1299441
  • Brady, L. F. (1961). A new species of Palaeohelcura Gilmore from the Permian of northern Arizona. Journal of Paleontology, 35(1), 201–202. http://jpaleontol.geoscienceworld.org/content/35/1/201.abstract
  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  • Clendenon, C. L. (2023). Reanalysis of coconino sandstone invertebrate ichnites based on neoichnology [Doctoral dissertation]. Department of Earth and Biological Sciences, Loma Linda University.
  • Clendenon, C. L., & Brand, L. R. (2024). Supplementary material for quantitative analysis of experimental trackways of scorpions, tarantulas, and crayfish, FigShare. https://doi.org/10.6084/m9.figshare.c.6778683
  • Coffin, D. (2013). Digital Camera Raw (DCRaw) Reader plugin (1.4.0). https://sourceforge.net/projects/ij-plugins/files/ij-dcraw/
  • Davis, R. B., Minter, N. J., & Braddy, S. J. (2007). The neoichnology of terrestrial arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(3-4), 284–307. https://doi.org/10.1016/j.palaeo.2007.07.013
  • Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., & Zupan, B. (2013). Orange: Data mining toolbox in Python. Journal of Machine Learning Research, 14, 2349–2353. https://jmlr.org/papers/v14/demsar13a.html
  • Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development, 39(2-3), 124–142. https://doi.org/10.1016/j.asd.2010.01.003
  • Fairchild, J. M., & Hasiotis, S. T. (2011). Terrestrial and aquatic neoichnological laboratory experiments with the freshwater crayfish Orconectes: Trackways on media of varying grain size, moisture, and inclination. PALAIOS, 26(12), 790–804. https://doi.org/10.2110/palo.2011.p11-066r
  • Foley, S. (2019). The natural history and evolution of tarantula spiders [Ph.D. Thesis]. National University of Singapore. https://scholarbank.nus.edu.sg/handle/10635/170950
  • Gilmore, C. W. (1926). Fossil footprints from the Grand Canyon. Smithsonian Miscellaneous Collection, 77(9), 1–41.
  • Gilmore, C. W. (1927). Fossil footprints from the Grand Canyon: Second contribution. Smithsonian Miscellaneous Collection, 80(3), 1–78.
  • Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27(4), 857–871. http://links.jstor.org/sici?sici=0006-341X%28197112%2927%3A4%3C857%3AAGCOSA%3E2.0.CO%3B2-3 https://doi.org/10.2307/2528823
  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  • Hasiotis, S. T., & Mitchell, C. E. (1993). A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2(4), 291–314. https://doi.org/10.1080/10420949309380104
  • Hasiotis, S. T., Mitchell, C. E., & Dubiel, R. F. (1993). Application of morphologic burrow interpretations to discern continental burrow architects: Lungfish or crayfish? Ichnos, 2(4), 315–333. https://doi.org/10.1080/10420949309380105
  • Heinzen, E., Sinnwell, J., Atkinson, E., Gunderson, T., Dougherty, G. (2021). arsenal: An arsenal of “R” functions for large-scale statistical summaries (3.6.3). https://CRAN.R-project.org/package=arsenal
  • Hembree, D. I., & Swaninger, E. S. (2018). Large Camborygma isp. in fluvial deposits of the Lower Permian (Asselian) Dunkard Group, southeastern Ohio, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 491, 137–151. https://doi.org/10.1016/j.palaeo.2017.12.003
  • Hunt, A. P., & Lucas, S. G. (2005). Nonmarine Permian track faunas from Arizona, USA: Ichnotaxonomy and ichnofacies. New Mexico Museum of Natural History and Science Bulletin, 30, 128–131.
  • Joshi, N., Gutierrez, R. (2015). Image composite editor (2.0.3.0). Microsoft Corporation. https://www.microsoft.com/en-us/research/project/image-composite-editor/
  • Krapovickas, V., Mángano, M. G., Buatois, L. A., & Marsicano, C. A. (2016). Integrated ichnofacies models for deserts: Recurrent patterns and megatrends. Earth-Science Reviews, 157, 61–85. https://doi.org/10.1016/j.earscirev.2016.03.006
  • Manton, S. M. (1973). Evolution of arthropodan locomotory mechanisms. Part 11. Habits, morphology and evolution of Uniramia (Onychophora, Myriapoda, Hexapoda) and comparisons with Arachnida, together with a functional review of Uniramian musculature. Zoological Journal of the Linnean Society, 53(4), 257.
  • Miller, G. L., & Ash, S. R. (1988). The oldest freshwater decapod crustacean, from the Triassic of Arizona. Palaeontology, 31(2), 273–279.
  • Minter, N. J., Braddy, S. J., & Davis, R. B. (2007). Between a rock and a hard place: Arthropod trackways and ichnotaxonomy. Lethaia, 40(4), 365–375. https://doi.org/10.1111/j.1502-3931.2007.00035.x
  • Peixoto, B., d C. P. e M., Mángano, M. G., Minter, N. J., Fernandes, L. B. d R., & Fernandes, M. A. (2020). A new insect trackway from the upper Jurassic–lower cretaceous Eolian sandstones of São Paulo State, Brazil: Implications for reconstructing desert paleoecology. PeerJ. 8, e8880. https://doi.org/10.7717/peerj.8880
  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Rose, M., Harris, J. D., & Milner, A. R. C. (2021). A trace fossil made by a walking crayfish or crayfish-like arthropod from the Lower Jurassic Moenave formation of southwestern Utah, USA. PeerJ. 9, e10640. https://doi.org/10.7717/peerj.10640
  • Sadler, C. J. (1993). Arthropod trace fossils from the Permian De Chelly Sandstone, northeastern Arizona. Journal of Paleontology, 67(2), 240–249. https://doi.org/10.1017/S0022336000032169
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
  • Schmerge, J. D., Riese, D. J., & Hasiotis, S. T. (2013). Vinegaroon (Arachnida: Thelyphonida: Thelyphonidae) trackway production and morphology: Implications for media and moisture control on trackway morphology and a proposal for a novel system of interpreting arthropod trace fossils. PALAIOS, 28(2), 116–128. https://doi.org/10.2110/palo.2012.p12-012r
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Smith, J. (1909). Upland fauna of the old red sandstone formation of Carrick, Ayrshire. AW Cross.
  • Taguchi, Y.-h., & Oono, Y. (2005). Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics, 21(6), 730–740. https://doi.org/10.1093/bioinformatics/bti067
  • Thomson, T. J., Chure, D. J., Good, T. R., Kirkland, J. I., & Milner, A. R. C. (2015). Large arachnid tracks from the Eolian Triassic/Jurassic Nugget Sandstone, northeastern Utah. Abstracts with Programs - Geological Society of America, 47(7), 567.
  • Trewin, N. H. (1994). A draft system for the identification and description of arthropod trackways. Palaeontology, 37, 811–823. http://cdn.palass.org/publications/palaeontology/volume_37/pdf/vol37_part4_pp811-823.pdf
  • Walker, E. F. (1985). Arthropod Ichnofauna of the old red sandstone at Dunure and Montrose, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(2-3), 287–297. https://doi.org/10.1017/S0263593300010506
  • Wendruff, A. J., Babcock, L. E., Wirkner, C. S., Kluessendorf, J., & Mikulic, D. G. (2020). A Silurian ancestral scorpion with fossilised internal anatomy illustrating a pathway to arachnid terrestrialisation. Scientific Reports, 10(1), 14. https://doi.org/10.1038/s41598-019-56010-z