123
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Core-shell magnetic nanocomposite Fe3O4@SiO2@CS@POCl2-x for alcohols to alkyl halides transformationOpen Materials

ORCID Icon, &
Pages 169-177 | Received 07 Jun 2023, Accepted 19 Sep 2023, Published online: 27 Nov 2023

References

  • Reshad, R. A. I.; Jishan, T. A.; Chowdhury, N. N. Chitosan and Its Broad Applications: A Brief Review. SSRN Journal. 2021, 1–41. DOI: 10.2139/ssrn.3842055.
  • (a) Adel, M.; Ahmed, M. A.; Elabiad, M. A.; Mohamed, A. A. Removal of Heavy Metals and Dyes from Wastewater Using Graphene Oxide-Based Nanomaterials: A Critical Review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100719–100721. DOI: 10.1016/j.enmm.2022.100719. (b) Abdel-Rahman, L. H.; Abu-Dief, A. M.; Adam, M. S. S.; Hamdan, S. K. Some New Nano-Sized Mononuclear Cu (II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation. Catal. Lett. 2016, 146, 1373–1396. DOI: 10.1007/s10562-016-1755-0.
  • (a) Ebrahimzadeh, F.; Tamami, B. Preparation and Characterization of Palladium Nanoparticles Supported on Phosphinated Poly (Vinyl Alcohol) as New Recyclable Catalyst and Their Application for Heck Cross-Coupling Reactions. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 144–157. DOI: 10.1080/10426507.2014.903485 (b) Pace, V.; Sinisterra, J. V.; Alcantara, A. R. Celite-Supported Reagents in Organic Synthesis: An Overview. Curr. Org. Chem. 2010, 14 (20), 2384–2408. DOI: 10.2174/138527210793358213.(c) Ebrahimzadeh, F. Synthesis of secondary amines via amination of alcohols with benzyl amine using the magnetic nano catalyst Fe3O4@SiO2@CS@EDTA/Cu(II). IRJMETS. 5 (10), 2640–2646. DOI: 10.56726/IRJMETS45483.
  • Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049–10293. DOI: 10.1021/acs.chemrev.8b00081.
  • Amaral, I.; Granja, P.; Barbosa, M. Chemical Modification of Chitosan by Phosphorylation: An XPS, FT-IR and SEM Study. J. Biomater. Sci. Polym. Ed. 2005, 16, 1575–1593. DOI: 10.1163/156856205774576736.
  • Petrakova, N. V.; Teterina, A. Y.; Mikheeva, P. V.; Akhmedova, S. A.; Kuvshinova, E. A.; Sviridova, I. K.; Sergeeva, N. S.; Smirnov, I. V.; Fedotov, A. Y.; Kargin, Y. F.; et al. In Vitro Study of Octacalcium Phosphate Behavior in Different Model Solutions. ACS Omega 2021, 6, 7487–7498. From NLM. DOI: 10.1021/acsomega.0c06016.
  • Kudzin, M. H.; Giełdowska, M.; Krata, A. A.; Sulak, E.; Urbaniak, P.; Drabowicz, J. Phosphorylation of Chitosan (Chitin) Surface with PCl3. Phosphorus Sulfur Silicon Relat. Elem 2022, 197, 625–629. DOI: 10.1080/10426507.2021.2014489.
  • (a) Hirbawi, N.; Lin, P. C.; Jarvo, E. R. Halogenation Reactions of Alkyl Alcohols Employing Methyl Grignard Reagents. J. Org. Chem. 2022, 87, 12352–12369. DOI: 10.1021/acs.joc.2c01590 (b) Roy, B. C.; Ganguli, K.; Samim, S. A.; Kundu, S. Alkyl Phosphine Free, Metal‐Ligand Cooperative Complex Catalyzed Alcohol Dehydrogenative Coupling Reactions. Asian J. Org. Chem. 2021, 10 (6), 1218–1232. DOI: 10.1002/ajoc.202100034.
  • Firouzabadi, H.; Iranpoor, N.; Ebrahimzadeh, F. Facile Conversion of Alcohols into Their Bromides and Iodides by N-Bromo and N-Iodosaccharins/Triphenylphosphine Under Neutral Conditions. Tetrahedron Lett. 2006, 47, 1771–1775. DOI: 10.1016/j.tetlet.2006.01.033.
  • Denton, R. M.; An, J.; Adeniran, B. Phosphine Oxide-Catalysed Chlorination Reactions of Alcohols Under Appel Conditions. Chem Commun (Camb) 2010, 46, 3025–3027. DOI: 10.1039/C002825H.
  • Abdugadar, A. Activation of Alcohols toward Neocleophilic Substitution: Conversion of Alcohols to Alkyl Halides. Thesis, University of Northern Colorado, 2012.
  • Xu, Z.-L.; Xing, P.; Jiang, B. Intramolecular Aza-Piancatelli Rearrangement of Alkyl-or Arylamines Promoted by PPh3/Diethyl Azodicarboxylate. Org Lett 2017, 19, 1028–1031. DOI: 10.1021/acs.orglett.6b03853.
  • Firouzabadi, H.; Iranpoor, N.; Ebrahimzadeh, F. Direct Conversion of Trimethylsilyl and Tetrahydropyranyl Ethers into Their Bromides and Iodides Under Neutral Conditions Using N-Bromo and N-Iodosaccharins in the Presence of Triphenylphosphine. JICS 2008, 5, 400–406. DOI: 10.1007/BF03245994.
  • Chen, J.; Lin, J.-H.; Xiao, J.-C. Halogenation through Deoxygenation of Alcohols and Aldehydes. Org Lett 2018, 20, 3061–3064. DOI: 10.1021/acs.orglett.8b01058.
  • Mokhtary, M.; Najafizadeh, F. Tungstosilicic Acid: An Efficient and Ecofriendly Catalyst for the Conversion of Alcohols to Alkyl Iodides. Org. Chem. Int. 2011, 2011, 1–4. DOI: 10.1155/2011/835183.
  • Iranpoor, N.; Firouzabadi, H.; Jamalian, A.; Kazemi, F. Silicaphosphine (Silphos): a Filterable Reagent for the Conversion of Alcohols and Thiols to Alkyl Bromides and Iodides. Tetrahedron 2005, 61, 5699–5704. DOI: 10.1016/j.tet.2005.01.115.
  • Kiasat, A. R.; Davarpanah, J. Fe3O4@ Silica Sulfuric Acid Nanoparticles: An Efficient Reusable Nanomagnetic Catalyst as Potent Solid Acid for One-Pot Solvent-Free Synthesis of Indazolo [2, 1-b] Phthalazine-Triones and Pyrazolo [1, 2-b] Phthalazine-Diones. J. Mol. Catal. A Chem. 2013, 373, 46–54. DOI: 10.1016/j.molcata.2013.03.003.
  • Cheng, J.; Tan, G.; Li, W.; Zhang, H.; Wu, X.; Wang, Z.; Jin, Y. Facile Synthesis of Chitosan Assisted Multifunctional Magnetic Fe3O4@ SiO2@ CS@ Pyropheophorbide-a Fluorescent Nanoparticles for Photodynamic Therapy. New J. Chem. 2016, 40, 8522–8534. DOI: 10.1039/C6NJ01765G.
  • (a) Kudzin, M. H.; Mrozińska, Z.; Giełdowska, M.; Krata, A. A.; Urbaniak, P.; Drabowicz, J. Phosphorylation of the Cellulose Surface with PCl3 and P(O)Cl3. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 634–638. DOI: 10.1080/10426507.2021.2014490. (b) Achmatowicz, M. M.; Thiel, O. R.; Colyer, J. T.; Hu, J.; Elipe, M. V. S.; Tomaskevitch, J.; Tedrow, J. S.; Larsen, R. D. Hydrolysis of Phosphoryl Trichloride (POCl3): Characterization, In Situ Detection, and Safe Quenching of Energetic Metastable Intermediates. Org. Process Res. Dev. 2010, 14 (6), 1490–1500. DOI: 10.1021/op1001484.
  • Queiroz, M. F.; Teodosio Melo, K. R.; Sabry, D. A.; Sassaki, G. L.; Rocha, H. A. O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar Drugs 2014, 13, 141–158. DOI: 10.3390/md13010141.
  • Lai, X.; Qiu, J.; Li, H.; Zeng, X.; Tang, S.; Chen, Y.; Chen, Z. Flame-Retardant and Thermal Degradation Mechanism of Caged Phosphate Charring Agent with Melamine Pyrophosphate for Polypropylene. Int. J. Polym. Sci. 2015, 2015, 1–11. DOI: 10.1155/2015/360274.
  • (a) Yu, X.; Zhan, Q. Phosphate-Mineralization Microbe Repairs Heavy Metal Ions That Formed Nanomaterials in Soil and Water. Nanomater-Toxicity Hum. Health Environ. 2019. DOI: 10.5772/intechopen.84296. (b) Li, Z.; Liu, Y.; Zou, S.; Lu, C.; Bai, H.; Mu, H.; Duan, J. Removal and Adsorption Mechanism of Tetracycline and Cefotaxime Contaminants in Water by NiFe2O4-COF-Chitosan-Terephthalaldehyde Nanocomposites Film. J. Chem. Eng. 2020, 382, 123008–123021. DOI: 10.1016/j.cej.2019.123008.
  • (a) Galan, J.; Trilleras, J.; Zapata, P. A.; Arana, V. A.; Grande-Tovar, C. D. Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life (Basel) 2021, 11, 85–109. (b) Smith, S. E.; Tsui, M.; Williams, B.; Carpenter, E. E. Chemical Processing and Magnetic Properties of Ferrite Nanoparticles. Mod. Ferrites Basic Principles, Proces. Properties 2022, 1, 269–294. DOI: 10.1002/9781118971499.ch9. (c) Larkin, P. J. General Outline for IR and Raman Spectral Interpretation. Infrared Raman Spectrosc. 2018, 2, 135–151. (d) Smeaton, E.; Smith, M.; White, M. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Thieme: Stuttgart, 2013. (e) Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, 2017. DOI: 10.3390/life11020085.
  • (a) Cai, Z.; Zhang, Y.; Cao, Y.; Liu, Y.; Tang, G.; Zhao, Y. Ternary Photoredox/Nickel/Halide Catalysis for the Phosphorylation of Alcohols with White Phosphorus. ACS Catal 2023, 13, 8330–8335. DOI: 10.1021/acscatal.3c01942. (b) Fakhraian, H.; Mirzaei, A. Reconsideration of the Base-Free Batch-Wise Esterification of Phosphorus Trichloride With Alcohols. Org. Process Res. Dev. 2004, 8 (3), 401–404. DOI: 10.1021/op049958v. (c) Bálint, E.; Tajti, Á.; Tóth, N.; Keglevich, G. Continuous Flow Alcoholysis of Dialkyl H-Phosphonates with Aliphatic Alcohols. Molecules. 2018, 23 (7), 1618–1633. DOI: 10.3390/molecules23071618.
  • Di Deo, M.; Marcantoni, E.; Torregiani, E.; Bartoli, G.; Bellucci, M. C.; Bosco, M.; Sambri, L. A Simple, Efficient, and General Method for the Conversion of Alcohols into Alkyl Iodides by a CeCl3.7H2O/NaI System in Acetonitrile. J. Org. Chem. 2000, 65 (9), 2830–2833. DOI: 10.1021/jo991894c.
  • Bhattacharjee, P.; Bora, U. Molecular Iodine-Catalyzed Selective C-3 Benzylation of Indoles with Benzylic Alcohols: A Greener Approach toward Benzylated Indoles. ACS Mega 2019, 4, 11770–11776. DOI: 10.1021/acsomega.9b01481.
  • Kad, G. L.; Kaur, J.; Bansal, P.; Singh, J. Selective Iodination of Benzylic Alcohols with Sodium Iodide Over KSF-Clay under Microwave Irradiation. J. Chem. Res. Synop. 2010, 34, 188–189. DOI: 10.1002/chin.199634064.
  • Lauwers, M.; Regnier, B.; Van Eenoo, M.; Denis, J.; Krief, A. Diphosphorus Tetraiodine (P2I4) a Valuable Reagent for Regioselective Synthesis of Iodoalkanes from Alcohols. Tetrahedron Lett. 1979, 20, 1801–1804. DOI: 10.1016/S0040-4039(01)86222-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.