68
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Synthesis, synthetic interests, and biological activities of β-substituted vinylphosphonates

, & ORCID Icon
Pages 112-128 | Received 07 Aug 2023, Accepted 04 Oct 2023, Published online: 25 Nov 2023

References

  • Minami, T.; Motoyoshiya, J. Vinylphosphonates in Organic Synthesis. Synthesis. 1992, 1992, 333–349. DOI: 10.1055/s-1992-26103.
  • Maffei, M. Transition Metal-Promoted Syntheses of Vinylphosphonates. COS. 2004, 1, 355–375. DOI: 10.2174/1570179043366558.
  • Dembitsky, V. M.; Al Quntar, A.; Haj-Yehia, A.; Srebnik, M. Recent Synthesis and Transformation of Vinylphosphonates. MROC. 2005, 2, 91–109. DOI: 10.2174/1570193052774090.
  • Collard, J.-N.; Benezra, C. α-Methylene-γ-Phostones”1 (5,5-Di- and 5-Monoalkyl-2-Methoxy-3-Methylene-1,2-Oxaphospholan-2-Ones). A Phosphorus Analog of the One-Step Reformatsky Synthesis of α-Methylene-γ-Butyrolactones from Ketones and Aldehydes. Tetrahedron Lett. 1982, 23, 3725–3728. DOI: 10.1016/S0040-4039(00)88668-2.
  • Knochel, P.; Normant, J. F. Synthèse de Diènes-1,4 Fonctionnalisés Par Addition de Zinciques Allyliques Fonctionnalisés Sur Des Alcynes Vrais et Leur Cyclisation en Hétérocycles ou Carbocycles. J. Organomet. Chem. 1986, 309, 1–23. DOI: 10.1016/S0022-328X(00)99569-X.
  • Rambaud, M.; Vecchio, A. D.; Villieras, J. Wittig-Horner Reaction in Heterogenous Media: V 1. An Efficient Synthesis of Alkene-Phosphonates and αL-Hydroxymethyl-α-Vinyl Phosphonate in Water in the Presence of Potassium Carbonate. Synth. Commun. 1984, 14, 833–841. DOI: 10.1080/00397918408075726.
  • Gurevich, I. E.; Tebby, J. C.; Dogadina, A. V.; Ionin, B. I. Dimethyl-3-Chloroprop-1-En-2-Ylphosphonate. Part 3. Alkylation of Anionic O and C Nucleophiles and Preparation of 1-Alkenyl-2-Phosphonates. Phosphorus Sulfur Silicon Relat. Elem. 1999, 148, 61–78. DOI: 10.1080/10426509908037001.
  • Knochel, P.; Normant, J. F. Addition of Functionalized Allylic Bromides to Terminal Alkynes. Tetrahedron Lett. 1984, 25, 1475–1478. DOI: 10.1016/S0040-4039(01)80190-8.
  • Csuk, R.; Schröder, C. Allylphosphonates by Heteroanalogous Zinc-Silver/Graphite Mediated Dreiding-Schmidt Reactions. J. Carbohydr. Chem. 1999, 18, 285–295. DOI: 10.1080/07328309908543996.
  • Gao, J.; Martichonok, V.; Whitesides, G. M. Synthesis of a Phosphonate Analog of Sialic Acid (Neu5Ac) Using Indium-Mediated Allylation of Unprotected Carbohydrates in Aqueous Media. J. Org. Chem. 1996, 61, 9538–9540. DOI: 10.1021/jo961290y.
  • Chan, T.-H.; Xin, Y.-C.; von Itzstein, M. Synthesis of Phosphonic Acid Analogues of Sialic Acids (Neu5Ac and KDN) as Potential Sialidase Inhibitors. J. Org. Chem. 1997, 62, 3500–3504. DOI: 10.1021/jo961891p.
  • Clarke, T.; Stewart, J. D.; Ganem, B. Transition-State Analogue Inhibitors of Chorismate Mutase. Tetrahedron. 1990, 46, 731–748. DOI: 10.1016/S0040-4020(01)81357-0.
  • Arasappan, A.; Fuchs, P. L. Regiospecific 4,6-Functionalization of Pyranosides via Dimethylboron Bromide-Mediated Cleavage of Phthalide Orthoesters. J. Am. Chem. Soc. 1995, 117, 177–183. DOI: 10.1021/ja00106a021.
  • Rathgeb, X.; March, S.; Alexakis, A. One-Pot Asymmetric Conjugate Addition − Trapping of Zinc Enolates by Activated Electrophiles. J. Org. Chem. 2006, 71, 5737–5742. DOI: 10.1021/jo060814j.
  • Gurevich, I. E.; Tebby, J. C. Dimethyl 3-Chloroprop-1-En-2-Ylphosphonate. Part 2. Alkylation of Amines, Phosphines and Phosphites. J. Chem. Soc., Perkin Trans. 1. 1995, 1259. DOI: 10.1039/p19950001259.
  • Krawczyk, H. The Mannich Reaction of Diethyl Phosphonoacetic Acid. A Novel Route to 1-(N,N-Dialkylamino)Methylvinylphosphonates. Synth. Commun. 1994, 24, 2263–2271. DOI: 10.1080/00397919408019051.
  • Krawczyk, H. A Convenient Route to 1-Alkoxymethylvinylphosphonates. A Novel Reaction of Diethylphosphonoacetic Acid. Phosphorus Sulfur Silicon Relat. Elem. 1996, 113, 39–45. DOI: 10.1080/10426509608046375.
  • Bailey, P. L.; Jackson, R. F. W. Nucleophilic Addition-Elimination Reactions of N-(p-Tolylsulphonyl)Vinylsulphoximines: Preparation of α-Methylene Nitriles and Phosphonates. Tetrahedron Lett. 1991, 32, 3119–3122. DOI: 10.1016/0040-4039(91)80705-B.
  • Loreto, M. A.; Pompili, C.; Tardella, P. A. α-Methylene β-Amino Phosphonic Ester Derivatives by Amination of (1-Trimethylsilanylmethyl-Vinyl) Phosphonic Esters. Tetrahedron. 2001, 57, 4423–4427. DOI: 10.1016/S0040-4020(01)00311-8.
  • Ageno, T.; Okauchi, T.; Minami, T.; Ishida, M. Generation of α-Phosphonovinyl Radicals and Development of a New Route to Highly Functionalized Vinylphosphonates and Vinylphosphonate-Incorporated Carbocyclic or Heterocyclic Compounds via a Radical Trapping Sequence. Org. Biomol. Chem. 2005, 3, 924–931. DOI: 10.1039/B416394J.
  • Amri, H.; El Gaied, M. M.; Villiéras, J. Hydroxyalkylation of Diethylvinylphosphonate in the Presence of DABCO. Synth. Commun. 1990, 20, 659–663. DOI: 10.1080/00397919008052307.
  • Nagaoka, Y.; Tomioka, K. Baylis − Hillman-Type Carbon − Carbon Bond Formation of Alkenylphosphonates by the Action of Lithium Diisopropylamide. J. Org. Chem. 1998, 63, 6428–6429. DOI: 10.1021/jo981028k.
  • Koszuk, J. F. Preparation of New 1-Alkenylphosphonates and 2-Alkenylphosphonates by Claisen Rearrangement. Synth. Commun. 1995, 25, 2533–2543. DOI: 10.1080/00397919508011797.
  • Bhattacharya, A. K.; Thyagarajan, G. Michaelis-Arbuzov Rearrangement. Chem. Rev. 1981, 81, 415–430. DOI: 10.1021/cr00044a004.
  • Kojima, M.; Yamashita, M.; Yoshida, H.; Ogata, T.; Inokawa, S. Useful Method for the Preparation of α,β-Unsaturated Phosphonates (1-Methylenealkanephosphonates). Synthesis. 1979, 1979, 147–148. DOI: 10.1055/s-1979-28597.
  • Yamashita, M.; Kojima, M.; Yoshida, H.; Ogata, T.; Inokawa, S. New Synthesis and Hydroboration of Vinylphosphonates. BCSJ. 1980, 53, 1625–1628. DOI: 10.1246/bcsj.53.1625.
  • Rabasso, N.; Fadel, A. Synthesis of New β- and γ-Aminopyrrolidinephosphonates via 1,3-Dipolar Cycloaddition of Substituted Vinylphosphonates. Tetrahedron Lett. 2010, 51, 60–63. DOI: 10.1016/j.tetlet.2009.10.087.
  • Han, L.-B.; Tanaka, M. Palladium-Catalyzed Hydrophosphorylation of Alkynes via Oxidative Addition of HP(O)(or)2. J. Am. Chem. Soc. 1996, 118, 1571–1572. DOI: 10.1021/ja953690t.
  • Han, L.-B.; Choi, N.; Tanaka, M. Facile Oxidative Addition of the Phosphorous − Selenium Bond to Pd(0) and Pt(0) Complexes and Development of Pd-Catalyzed Regio- and Stereoselective Selenophosphorylation of Alkynes. J. Am. Chem. Soc. 1996, 118, 7000–7001. DOI: 10.1021/ja9608860.
  • Han, L.-B.; Tanaka, M. Novel Palladium-Catalyzed Thiophosphorylation of Alkynes with Phosphorothioate: An Efficient Route to (Z)-1-(Diphenoxyphosphinyl)-2-(Phenylthio)Alkenes. Chem. Lett. 1999, 28, 863–864. DOI: 10.1246/cl.1999.863.
  • Ananikov, V.; Khemchyan, L.; Beletskaya, I. Celebrating 20 Years of SYNLETT – Special Essay: General Procedure for the Palladium-Catalyzed Selective Hydrophosphorylation of Alkynes. Synlett. 2009, 2009, 2375–2381. DOI: 10.1055/s-0029-1217739.
  • Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. Efficient and Selective Nickel-Catalyzed Addition of H − P(O) and H − S Bonds to Alkynes. J. Am. Chem. Soc. 2004, 126, 5080–5081. DOI: 10.1021/ja0494297.
  • Keglevich, G.; Bálint, E.; Takács, J.; Drahos, L.; Huben, K.; Jankowski, S. The Addition of Dialkyl Phosphites and Diphenylphosphine Oxide on the Triple Bond of Dimethyl Acetylenedicarboxylate under Solvent-Free and Microwave Conditions. COS. 2014, 11, 161–166. DOI: 10.2174/1570179411999140304142747.
  • Panossian, A.; Fleury-Brégeot, N.; Marinetti, A. Use of Allenylphosphonates as New Substrates for Phosphane-Catalyzed [3 + 2] and [4 + 2] Annulations. Eur. J. Org. Chem. 2008, 2008, 3826–3833. DOI: 10.1002/ejoc.200800347.
  • Park, H.; Cho, C.-W.; Krische, M. J. Phosphine-Catalyzed Allylic Substitution of Morita − Baylis − Hillman Acetates: Synthesis of N-Protected β-Aminophosphonic Acid Esters. J. Org. Chem. 2006, 71, 7892–7894. DOI: 10.1021/jo061218s.
  • Garzon, C.; Attolini, M.; Maffei, M. Synthesis of β-Aminovinylphosphonates by Organocatalytic Nucleophilic Displacement of Acetate with Amines. Tetrahedron Lett. 2010, 51, 3772–3774. DOI: 10.1016/j.tetlet.2010.05.050.
  • Garzon, C.; Attolini, M.; Maffei, M. Organocatalyzed Synthesis of Alpha-(Substituted Methyl)Vinylphosphonates. Synthesis. 2011, 2011, 3109–3114. DOI: 10.1055/s-0030-1260176.
  • Garzon, C.; Attolini, M.; Maffei, M. Synthesis of Azaheterocyclic Vinylphosphonates by Ring-Closing Metathesis. Eur. J. Org. Chem. 2013, 2013, 3653–3657. DOI: 10.1002/ejoc.201300375.
  • Krawczyk, H.; Albrecht, Ł.; Wojciechowski, J.; Wolf, W. M. Synthesis and Crystal Structure of 1-(Aminomethyl)Vinylphosphonic Acid. Tetrahedron. 2008, 64, 5051–5054. DOI: 10.1016/j.tet.2008.03.064.
  • Tao, M.; Bihovsky, R.; Wells, G. J.; Mallamo, J. P. Novel Peptidyl Phosphorus Derivatives as Inhibitors of Human Calpain I. J. Med. Chem. 1998, 41, 3912–3916. DOI: 10.1021/jm980325e.
  • Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. New Hybrid Transition State Analog Inhibitors of HIV Protease with Peripheric C2 Symmetry. Tetrahedron Lett. 1992, 33, 6625–6628. DOI: 10.1016/S0040-4039(00)61002-X.
  • Zygmunt, J.; Gancarz, R.; Lejczak, B.; Wieczorek, P.; Kafarski, P. Stereoselective Synthesis of 2-Amino-1-Hydroxy-3-Phenylpropylphosphonic Acid. Bioorg. Med. Chem. Lett. 1996, 6, 2989–2992. DOI: 10.1016/S0960-894X(96)00545-8.
  • Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E.; Free, C. A.; Rogers, W. L.; Smith, S. A.; DeForrest, J. M.; Oehl, R. S.; Petrillo, E. W. Alpha-Hydroxy Phosphinyl-Based Inhibitors of Human Renin. J. Med. Chem. 1995, 38, 4557–4569. DOI: 10.1021/jm00022a022.
  • Fernández, M. C.; Ruiz, M.; Ojea, V.; Quintela, J. M. Diastereoselective Synthesis of 4-Alkylidene-2-Amino-4-Phosphonobutanoic Acids. Tetrahedron Lett. 2002, 43, 5909–5912. DOI: 10.1016/S0040-4039(02)01275-3.
  • Seto, K.; Tanaka.; Sakuya; Sakota, R. Dihydropyridine-5-Phosphonate Derivatives Jpn. Patent n° JP60069089, 1985.
  • Seto, K.; Sakoda, R.; Tanaka, S. Dihydropyridine-5-Phosphonic Acid Cyclic Propylene Ester. US Patent US4839361, 1989.
  • Sakoda, R.; Kamikawaji, Y.; Seto, K. Synthesis of 1,4-Dihydropyridine-5-Phosphonates and Their Calcium-Antagonistic and Antihypertensive Activities. Novel Calcium-Antagonist 2-(Benzyl(Phenly)Amino)Ethyl 5-(5,5-Dimethyl-2-Oxo-1,3,2-Dioxaphosphorinan-2-Yl)-1,4-Dihydro-2,6-Dimethyl-4-(3-Nitrophenyl)-3-Pyridinecarboxylate Hydrochloride Ethanol(NZ-105) and Its Crystal Structure. Chem. Pharm. Bull. (Tokyo). 1992, 40, 2362–2369. DOI: 10.1248/cpb.40.2362.
  • Sakoda, R.; Akiyama, S.-I.; Seto, K.; Shudo, N. S. Drug Effect-Enhancing Agent for Antitumor Drug. EP0353692A2, February 7, 1990.
  • Budzisz, E.; Nawrot, E.; Malecka, M. Synthesis, Antimicrobial, and Alkylating Properties of 3-Phosphonic Derivatives of Chromone. Arch. Pharm. Pharm. Med. Chem. 2001, 334, 381–387. (200112). DOI: 10.1002/1521-4184.
  • Budzisz, E.; Graczyk-Wojciechowska, J.; Zieba, R.; Nawrot, B. A New Series of 2-Substituted 3-Phosphonic Derivatives of Chromone. New J. Chem. 2002, 26, 1799–1804. DOI: 10.1039/b205800f.
  • Budzisz, E.; Brzezinska, E.; Krajewska, U.; Rozalski, M. Cytotoxic Effects, Alkylating Properties and Molecular Modelling of Coumarin Derivatives and Their Phosphonic Analogues. Eur. J. Med. Chem. 2003, 38, 597–603. DOI: 10.1016/S0223-5234(03)00086-2.
  • Budzisz, E.; Krajewska, U.; Ró, M. Cytotoxic and Proapoptotic Effetcs of New Pd(II) and Pt(II)-Complexes with 2-Ehanimidoyl-2-Methoxy-2H-1,2-Benzoxaphosphinin-4-Ol-2-Oxide. Polish J. Pharmacol. 2004, 56, 473–478.
  • Roifman, C. M.; Demin, P.; Freywald, A.; Grunberger, T.; Rounova, O.; Sharfe, N. Preparation of Styrylacrylonitrile Derivatives as Modulators of Cell Proliferation, World Patent WO2005092904, 2005.
  • Abdou, W. M.; Salem, M. A. I.; Barghash, R. F. A Facile Access to Condensed and Spirosubstituted Pyrimidine Phosphor Esters. Arkivoc. 2007, 2007, 45–60. DOI: 10.3998/ark.5550190.0008.f06.
  • Chadalapaka, G.; Jutooru, I.; McAlees, A.; Stefanac, T.; Safe, S. Structure-Dependent Inhibition of Bladder and Pancreatic Cancer Cell Growth by 2-Substituted Glycyrrhetinic and Ursolic Acid Derivatives. Bioorg. Med. Chem. Lett. 2008, 18, 2633–2639. DOI: 10.1016/j.bmcl.2008.03.031.
  • Tabuchi, Y.; Ando, Y.; Kanemura, H.; Kawasaki, I.; Ohishi, T.; Koida, M.; Fukuyama, R.; Nakamuta, H.; Ohta, S.; Nishide, K.; Ohishi, Y. Preparation of Novel (Z)-4-Ylidenebenzo[b]Furo[3,2-d][1,3]Oxazines and Their Biological Activity. Bioorg. Med. Chem. 2009, 17, 3959–3967. DOI: 10.1016/j.bmc.2009.04.017.
  • Shidlovskii, A. F.; Peregudov, A. S.; Averkiev, B. B.; Bulychev, Y. N.; Antipin, M. Y.; Chkanikov, N. D. Three-Component Condensation of Trifluoromethyl-Substituted Cyanovinylphosphonates, Arylamines, and Ketones and Cytotoxic Activity of Products Thus Obtained. Russ. Chem. Bull. 2010, 59, 144–161. DOI: 10.1007/s11172-010-0057-8.
  • Davies, H.; Chennamadhavuni, S.; Bakin, A. Preparation of Dimethyl Phenylhexadienedioate Derivatives and Analogs for Use as Tak1 Kinase Inhibitors, World Patent n° 2013012998, 2013.
  • Balczewski, P.; Szczesna, D.; Nawrot, B.; Cieslak, M.; Kazmierczak-Baranska, J. E-3-Aryl-3-Oxoprop-1-Enyl-2-Phosphonic Acid and Its Derivatives, Methods for Their Preparation and Their Use. European Patent n. 2014, 2787001.
  • Szczęsna, D.; Koprowski, M.; Różycka-Sokołowska, E.; Marciniak, B.; Bałczewski, P. Selective Horner–Wittig/Nazarov vs. Knoevenagel/Nazarov Reactions in the Synthesis of Biologically Active 3-Aryl-Substituted 1-Indanones. Synlett. 2017, 28, 113–116. DOI: 10.1055/s-0036-1588599.
  • Arsenjans, P.; Domraceva, I.; Paegle, E. Selenophenochromene Phosphonic Acids, Preparation and Use as Antiproliferative Agents. World Patent WO. 2021/038306 A1, 1–27.
  • del Corte, X.; López-Francés, A.; Villate-Beitia, I.; Sainz-Ramos, M.; Martínez de Marigorta, E.; Palacios, F.; Alonso, C.; de los Santos, J. M.; Pedraz, J. L.; Vicario, J. Multicomponent Synthesis of Unsaturated γ-Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group. Pharmaceuticals (Basel). 2022, 15, 511. DOI: 10.3390/ph15050511.
  • Neganova, M. E.; Aleksandrova, Y. R.; Nikolaeva, N. S.; Brel, V. K. Synthesis and Biological Testing of 3,5-Bis(Arylidene)-4-Piperidone Conjugates with 2,5-Dihydro-5H-1,2-Oxaphospholenes. Bioorg. Med. Chem. Lett. 2022, 74, 128940. DOI: 10.1016/j.bmcl.2022.128940.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.