86
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communications

Visible light photoredox-catalyzed phosphorylation of α-bromostyrenes: a mild synthesis of β-ketophosphine oxides

& ORCID Icon
Pages 162-168 | Received 10 Jul 2023, Accepted 09 Oct 2023, Published online: 15 Nov 2023

References

  • (a) Yan, B.; Spilling, C. D. Synthesis of Cyclopentenones via Intramolecular HWE and the Palladium-Catalyzed Reactions of Allylic Hydroxy Phosphonate Derivatives. J. Org. Chem. 2008, 73, 5385–5396. DOI: 10.1021/jo8004028. (b) Pronin, S. V.; Martinez, A.; Kuznedelov, K.; Severinov, K.; Shuman, H. A.; Kozmin, S. A. Chemical Synthesis Enables Biochemical and Antibacterial Evaluation of Streptolydigin Antibiotics. J. Am. Chem. Soc. 2011, 133, 12172–12184. DOI: 10.1021/ja2041964. (c) Müller, S.; Mayer, T.; Sasse, F.; Maier, M. E. Synthesis of a Pladienolide B Analogue with the Fully Functionalized Core Structure. Org. Lett. 2011, 13, 3940–3943. DOI: 10.1021/ol201464m.
  • (a) Giorgio, C.; Gianmauro, O.; Gerard, A. P. Chiral P, N-Ligands with Pyridine-Nitrogen and Phosphorus Donor Atoms. Syntheses and Applications in Asymmetric Catalysis. Chem. Rev. 2003, 103, 3029–3070. DOI: 10.1016/j.tet.2003.09.066. (b) Tang, W.; Zhang, X. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103, 3029–3070. DOI: 10.1021/cr020049i.
  • Luo, Z.; Ding, J.; Huang, D.; Wu, X.; Bi, Y. Recent Advances in Three-Component Reactions of P(O)-H Compounds. Tetrahedron. Lett. 2022, 96, 153757. DOI: 10.1016/j.tetlet.2022.153757.
  • (a) Rodrigues, A.; Vinhato, E.; Rittner, R.; Olivato, P. R. A Practical Synthesis of Diethyl 1-Methylthio-2-Oxo-2-Phenylethylphosphonates from Diethyl Methylthiomethylphosphonate. Org. Biomol. Chem. 2006, 4, 3102–3107. DOI: 10.1055/s-2003-39399. (b) Fox, D. J.; Pedersen, D. S.; Warren, S. Diphenylphosphinoyl-Mediated Synthesis of Ketones. Org. Biomol. Chem. 2006, 4, 3102–3107. DOI: 10.1039/B606873A. (c) Maloney, K. M.; Chung, J. Y. A General Procedure for the Preparation of β-Ketophosphonates. J. Org. Chem. 2009, 74, 7574–7576. DOI: 10.1021/jo901552k.
  • (a) Michaelis, A.; Kaehne, R. Ueber Das Verhalten Der Jodalkyle Gegen Die Sogen. Phosphorigsäureester Oder O-Phosphine. Ber. Dtsch. Chem. Ges. 1898, 31, 1048–1055. DOI: 10.1002/cber.189803101190. (b) Arbusow, B. A. Michaelis-Arbusow-Und Perkow-Reaktionen. Pure. Appl. Chem. 1964, 9, 307–335. DOI: 10.1351/pac196409020307.
  • For selected examples for phosphorylation of alkenes, see: (a) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang, G.; Lei, A. Electrochemical Oxidation‐Induced Oxyphosphorylation of Alkenes and Alkynes with Water via Hydrogen Atom Transfer. Chem. Commun. 2016, 52, 12338–12341. DOI: 10.1002/adsc.202200421. (b) Zhang, G. Y.; Li, C. K.; Li, D. P.; Zeng, R. S.; Shoberu, A.; Zou, J. P. Solvent-Controlled Direct Radical Oxyphosphorylation of Styrenes Mediated by Manganese(III). Tetrahedron. 2016, 72, 2972–2978. DOI: 10.1016/j.tet.2016.04.013. (c) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang, G.; Lei, A. Dioxygen-Induced Oxidative Activation of a P–H Bond: Radical Oxyphosphorylation of Alkenes and Alkynes Toward β-oxy Phosphonates. Chem. Commun. 2016, 52, 12338–12341. DOI: 10.1039/C6CC06881B. (d) Gu, J.; Cai, C. Cu(I)/Fe(III)-Catalyzed C–P Cross-Coupling of Styrenes with H-Phosphine Oxides: A Facile and Selective Synthesis of Alkenylphosphine Oxides and β-Ketophosphonates. Org. Biomol. Chem. 2017, 15, 4226–4230. DOI: 10.1039/C7OB00505A. (e) Liang, W.; Zhang, Z.; Yi, D.; Fu, Q.; Chen, S.; Yang, L.; Du, F.; Ji, J.; Wei, W. Copper‐Catalyzed Direct Oxyphosphorylation of Enamides with P(O)‐H Compounds and Dioxygen. Chin. J. Chem. 2017, 35, 1378–1382. DOI: 10.1002/cjoc.201700189. (e) Nan, G.; Yue, H. Direct Synthesis of β-Ketophosphine Oxides via Copper-Catalyzed Difunctionalization of Alkenes with H-Phosphine Oxides and Dioxygen, Tetrahedron Lett. 2018, 59, 2071–2074. DOI: 10.1016/j.tetlet.2018.04.042. (f) Shi, Y.; Chen, R.; Guo, K.; Meng, F.; Cao, S.; Gu, C.; Zhu, Y. Visible Light-Promoted Metal-Free Aerobic Oxyphosphorylation of Olefins: A Facile Approach to β-Ketophosphine Oxides. Tetrahedron Lett. 2018, 59, 2062–2065. DOI: 10.1016/j.tetlet.2018.04.040. (g) Shen, J.; Xiao, B.; Hou, Y.; Wang, X.; Li, G.-Z.; Chen, J.-C.; Wang, W.-L.; Cheng, J.-B.; Yang, B.; Yang, S.-D. Cobalt(II)‐Catalyzed Bisfunctionalization of Alkenes with Diarylphosphine Oxide and Peroxide, Adv. Synth. Catal. 2019, 361, 5198–5209. DOI: 10.1002/adsc.201900873. (h) Yang, J.; Sun, X.; Yan, K.; Sun, H.; Sun, S.; Jia, X.; Zhang, F.; Wen, J. Electrochemical Oxidation‐Induced Oxyphosphorylation of Alkenes and Alkynes with Water via Hydrogen Atom Transfer, Adv. Synth. Catal. 2022, 364, 2735–2740. DOI: 10.1002/adsc.202200421.
  • For selected examples for phosphorylation of alkynes, see: (a) Chen, X.; Li, X.; Chen, X.-L.; Qu, L.-B.; Chen, J.-Y.; Sun, K.; Liu, Z.-D.; Bi, W.-Z.; Xia, Y.-Y.; Wu, H.-T.; Zhao, Y.-F. Base-Promoted Direct Oxyphosphorylation of Alkynes with H-Phosphine Oxides in the Presence of Water. Chem. Commun. 2015, 51, 3846–3849. (b) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. Copper/Iron-Catalyzed Aerobic Oxyphosphorylation of Terminal Alkynes Leading to β-Ketophosphonates. J. Org. Chem. 2015, 80, 5023–5029. DOI: 10.1021/acs.joc.5b00408. (c) Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. β-Ketophosphonate Formation via Aerobic Oxyphosphorylation of Alkynes Or Alkynyl Carboxylic Acids with H-Phosphonates. Org. Lett. 2015, 17, 1786–1789. DOI: 10.1021/acs.orglett.5b00574. (d) Zhong, W. W.; Zhang, Q.; Li, M. S.; Hu, D. Y.; Cheng, M.; Du, F. T.; Ji, J. X.; Wei, W. Copper-Catalyzed Direct Oxyphosphorylation of Alkynes with H-Phosphine Oxides and Dioxygen: A Convenient Approach to β-Ketophosphine Oxides. Synth. Commun. 2016, 46, 1377–1385. DOI: 10.1080/00397911.2016.1205196. (e) Gutierrez, V.; Mascaro, E.; Alonso, F.; Moglie, Y.; Radivoy, G. Direct Synthesis of β-Ketophosphonates and Vinyl Phosphonates from Alkenes or Alkynes Catalyzed by CuNPs/ZnO. RSC. Adv. 2015, 5, 65739–65744. DOI: 10.1039/C5RA10223E. (f) Bu, M. J.; Lu, G. P.; Cai, C. Metal-Free Oxidative Phosphinylation of Aryl Alkynes to β-Ketophosphine Oxides Via Visible-Light Photoredox Catalysis. Catal. Sci. Technol. 2016, 6, 413–416. DOI: 10.1039/C5CY01541C. (g) Zhong, W.; Tan, T.; Shi, L.; Zeng, X. Base-Promoted Direct Oxyphosphorylation of Alkynes with H-Phosphine Oxides in The Presence Of Water, Synlett. 2018, 29, 1379–1384. DOI: 10.1055/s-0036-1591562.
  • For selected examples for phosphorylation of cinnamic acids, see: (a) Zhou, M.; Zhou, Y.; Song, Q. Cu/Fe-Cocatalyzed Formation of β-Ketophosphonates by a Domino Knoevenagel–Decarboxylation–Oxyphosphorylation Sequence from Aromatic Aldehydes and H-Phosphonates. Chemistry. 2015, 21, 10654–10659. DOI: 10.1002/chem.201501226. (b) Chen, X.; Chen, X.; Li, X.; Qu, C.; Qu, L.; Bi, W.; Sun, K.; Zhao, Y. Acetonitrile-Dependent Oxyphosphorylation: A Mild One-Pot Synthesis of β-Ketophosphonates from Alkenyl Acids or Alkenes. Tetrahedron. 2017, 73, 2439–2446. DOI: 10.1016/j.tet.2017.03.026. (c) Liu, L.; Zhou, D.; Dong, J.; Zhou, Y.; Yin, S. F.; Han, L. B. Transition-Metal-Free C–P Bond Formation via Decarboxylative Phosphorylation of Cinnamic Acids with P(O)H Compounds. J. Org. Chem. 2018, 83, 4190–4196. DOI: 10.1021/acs.joc.8b00187. (d) Qiao, H.; Sun, S.; Kang, J.; Yang, F.; Wu, Y.; Wu, Y. Copper-Catalyzed Decarboxylative Coupling of Alkenyl Acids with P(O)H Compounds at Room Temperature. Chin. J. Org. Chem. 2018, 38, 86–94. DOI: 10.6023/cjoc201708049. (e) Quin, H.-F.; Li, C.-K.; Zhou, Z.-H.; Tao, Z-K.; Shoberu, A.; Zou, J.-P. Visible Light-Mediated Photocatalytic Metal-Free Cross-Coupling Reaction of Alkenyl Carboxylic Acids with Diarylphosphine Oxides Leading to β-Ketophosphine Oxides. Org. Lett. 2018, 20, 5947–5951. DOI: 10.1021/acs.orglett.8b02639.
  • For selected examples for phosphorylation of alkenyl alcohols, see: Feng, S.; Li, J.; He, F.; Li, T.; Li, H.; Wang, X.; Xie, X.; She, X. A Copper-Catalyzed Radical Coupling/Fragmentation Reaction: Efficient Access to β-Oxophosphine Oxides. Org. Chem. Front. 2019, 6, 946–951. DOI: 10.1039/C9QO00006B.
  • For selected examples for phosphorylation of alkynylcarboxylates, see: Zhou, Y.; Rao, C.; Mai, S.; Song, Q. Substituent-Controlled Chemoselective Cleavage of C=C or Csp2–C(CO) Bond in α,β-Unsaturated Carbonyl Compounds with H-Phosphonates Leading to β-Ketophosphonates. J. Org. Chem. 2016, 81, 2027–2034. DOI: 10.1021/acs.joc.5b02887.
  • For selected examples for phosphorylation of carbonyl compounds, see: (a) Li, L.; Huang, W.; Chen, L.; Dong, J.; Ma, X.; Peng, Y. Iron‐Catalyzed and Air‐Mediated C(sp3)−H Phosphorylation of 1,3‐Dicarbonyl Compounds Involving C − C Bond Cleavage. Angew. Chem. Int. Ed. Engl. 2017, 56, 10539–10544. DOI: 10.1055/s-0030-1259932. (b) Lee, H. J.; Kim, J. H.; Kim, D. Y. Chiral Pd-Catalyzed Enantioselective Friedel–Crafts Reaction of Indoles with γ, δ-Unsaturated β-Keto Phosphonates. Tetrahedron Lett. 2011, 52, 3247–3249. DOI: 10.1016/j.tetlet.2011.04.084. (c) Woo, S. B.; Kim, Y.; Kim. D. Y. Enantioselective Fluorination of α-Chloro-β-Keto Phosphonates in the Presence of Chiral Palladium Complexes. Tetrahedron Lett. 2013, 54, 3359–3362. DOI: 10.1016/j.tetlet.2013.04.054. (d) Li, L.; Huang, W.; Chen, L.; Dong, J.; Ma, X.; Peng, Y. Silver‐Catalyzed Oxidative C(sp3)−P Bond Formation through C − C and P − H Bond Cleavage, Angew. Chem. Int. Ed. 2017, 56, 10539–10544. DOI: 10.1002/anie.201704910. (e) Fu, Q.; Yi, D.; Zhang, Z.; Liang, W.; Chen, S.; Yang, L.; Zhang, Q.; Jia, J.; Wei, W. Copper-Catalyzed Aerobic Oxidative Coupling of Ketones with P(O)–H Compounds Leading to β-Ketophosphine Oxides. Org. Chem. Front. 2017, 4, 1385–1389. DOI: 10.1039/C7QO00202E. (f) Zhang, Z. J.; Yi, D.; Fu, Q.; Liang, W.; Chen, S. Y.; Yang, L.; Du, F. T.; Ji, JX.; Wei, W. Copper Catalyzed One-Pot Synthesis of β-Ketophosphine Oxides from Ketones and H-Phosphine Oxides. Tetrahedron Lett. 2017, 58, 2417–2420. DOI: 10.1016/j.tetlet.2017.05.005. (g) Zhao, X.; Huang, M.; Li, Y.; Zhang, J.; Kim, J. K.; Wu, Y. Stepwise Photosensitized C (sp3)–C(CO) Bond Cleavage and C–P Bond Formation of 1,3-Dicarbonyls with Arylphosphine Oxides. Org. Chem. Front. 2019, 6, 1433–1437. DOI: 10.1039/C9QO00075E. (h) Ou, Y.; Huang, Y.; Liu, Y.; Huo, Y.; Gao, Y.; Li, X.; Chen, Q. Iron‐Catalyzed and Air‐Mediated C(sp3)−H Phosphorylation of 1,3‐Dicarbonyl Compounds Involving C − C Bond Cleavage. Adv. Synth. Catal. 2020, 362, 5783–5787. DOI: 10.1002/adsc.202001020.
  • For selected examples for phosphorylation of vinyl azides, see: (a) Tang, P.; Zhang, C.; Chen, E.; Chen, B.; Chen, W.; Yu, Y. Mn(III)-Catalyzed Phosphorylation of Vinyl Azides: The Synthesis of β-Keto Phosphine Oxides. Tetrahedron. Lett. 2017, 58, 2157–2161. DOI: 10.1016/j.tetlet.2017.04.069. (b) Jang, J.; Kim, D. Y. Transition Metal-Free Phosphorylation of Vinyl Azides: A Convenient Synthesis of β-Ketophosphine Oxides. Bull. Korean Chem. Soc. 2020, 41, 370–373. DOI: 10.1002/bkcs.11964. (c) Jung, H. L.; Kim, D. Y. Visible Light-Mediated Photocatalytic Phosphorylation of Vinyl Azides: A Mild Synthesis of β-Ketophosphine Oxides. Synth. Commun. 2020, 52, 380–387. DOI: 10.1080/00397911.2019.1696364.
  • (a) Shi, Y.; Chen, R.; Guo, K.; Meng, F.; Cao, S.; Gu, C.; Zhu, Y. Visible Light-Mediated Photocatalytic Metal-Free Cross-Coupling Reaction of Alkenyl Carboxylic Acids with Diarylphosphine Oxides Leading to β-Ketophosphine Oxides. Org. Lett. 2018, 59, 2062–2065. DOI: 10.1021/acs.orglett.8b02639. (b) Qian, H. F.; Li, C. K.; Zhou, Z .H.; Tao, Z. K.; Shoberu, A.; Zou, J. P. Visible Light-Mediated Photocatalytic Metal-Free Cross-Coupling Reaction of Alkenyl Carboxylic Acids with Diarylphosphine Oxides Leading to β-Ketophosphine Oxides. Org. Lett. 2018, 20, 5947–5951. DOI:
  • (a) Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Relay Cooperation of K2S2O8 and O2 in Oxytrifluoromethylation of Alkenes Using CF3SO2Na. Chem. Commun. 2014, 50, 14101–14104. (b) Lu, Q.; Chen, J.; Liu, C.; Huang, Z.; Peng, P.; Wang, H.; Lei, A. O2-Mediated C(sp2)–X Bond Oxygenation: Autoxidative Carbon–Heteroatom Bond Formation Using Activated Alkenes as a Linkage. RSC Adv. 2015, 5, 24494–24498. DOI: 10.1039/C4RA17106C. (c) Lu, Q.; Wang, H.; Peng, P.; Liu, C.; Huang, Z.; Luo, Y.; Lei, A. Autoinductive Thiolation/Oxygenation of Alkenes at Room Temperature. Org. Chem. Front. 2015, 2, 908–912. DOI: 10.1039/C5QO00102A. (d) Gao, Y.; Hill, D. E.; Hao, W.; McNicholas, B. J.; Vantourout, J. C.; Hadt, R. G.; Reisman, S. E.; Blackmond, D. G.; Baran, P. S. Electrochemical Nozaki–Hiyama–Kishi Coupling: Scope, Applications, and Mechanism. J. Am. Chem. Soc. 2021, 143, 9478–9488. DOI: 10.1021/jacs.1c03007. (e) Dong, Y.; Li, R.; Zhou, J.; Sun, Z. Synthesis of Unsymmetrical 1,4-Dicarbonyl Compounds by Photocatalytic Oxidative Radical Additions. Org. Lett. 2021, 23, 6387–6390. DOI: 10.1021/acs.orglett.1c02208.
  • (a) Zhou, S.-F.; Li, D.-P.; Liu, K.; Zou, J.-P.; Asekun, O. T. Direct Radical Acetoxyphosphorylation of Styrenes Mediated by Manganese(III). J. Org. Chem. 2015, 80, 1214–1220. DOI: 10.1021/jo5023298. (b) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang, G.; Lei, A. Dioxygen-Induced Oxidative Activation of a P–H Bond: Radical Oxyphosphorylation of Alkenes and Alkynes toward β-Oxy Phosphonates. Chem. Commun. 2016, 52, 12338–12341. DOI: 10.1039/C6CC06881B.
  • For representative recent reviews for photocatalysis, see: (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074. DOI: 10.1021/acs.chemrev.6b00018. (b) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898–6926. DOI: 10.1021/acs.joc.6b01449. (c) Kärkäs, M. D.; Porco, J. A.; Stephenson, C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116, 9683–9747. DOI: 10.1021/acs.chemrev.5b00760. (d) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development. ACS Catal. 2017, 7, 2563–2575. DOI: 10.1021/acscatal.7b00094. (e) Julia, F.; Constantin, T.; Leonori, D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem. Rev. 2022, 122, 2292–2352. DOI: 10.1021/acs.chemrev.1c00558. (f) Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Photocatalytic Late-Stage C–H Functionalization. Chem. Rev. 2023, 123, 4237–4352. DOI: 10.1021/acs.chemrev.2c00478.
  • For a selection of our recent works on C-H activation, see: (a) Kang, Y. K.; Kim, S. M.; Kim, D. Y. Enantioselective Organocatalytic C − H Bond Functionalization via Tandem 1,5-Hydride Transfer/Ring Closure: Asymmetric Synthesis of Tetrahydroquinolines. J. Am. Chem. Soc. 2010, 132, 11847–11849. DOI: 10.1021/ja103786c. (b) Kang, Y. K.; Kim, D. Y. Asymmetric Synthesis of Tetrahydroquinolines via 1,5‐Hydride Transfer/Cyclization Catalyzed by Chiral Primary Amine Catalysts, Adv. Synth. Catal. 2013, 355, 3131–3136. DOI: 10.1002/adsc.201300398. (c) Suh, C. W.; Woo, S. B.; Kim, D. Y. Asymmetric Synthesis of Tetrahydroquinolines via Saegusa-Type Oxidative Enamine Catalysis/1,5-Hydride Transfer/Cyclization Sequences, Asian J. Org. Chem. 2014, 3, 399–402. DOI: 10.1002/ajoc.201400022. (d) Kang, Y. K.; Kim, D. Y. Enantioselective Organocatalytic Oxidative Enamine Catalysis–1, 5-Hydride Transfer–Cyclization Sequences: Asymmetric Synthesis of Tetrahydroquinolines. Chem. Commun. 2014, 50, 222–224. DOI: 10.1039/C3CC46710D. (e) Suh, C. W.; Kim, D. Y. Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1, 5-Hydride Transfer/Cyclization Sequences, Org. Lett. 2014, 16, 5374–5377. DOI: 10.1021/ol502575f. (f) Kwon, S. J.; Kim, D. Y. Organo‐ and Organometallic‐Catalytic Intramolecular [1,5]‐Hydride Transfer/Cyclization Process through C(sp3)–H Bond Activation. Chem. Rec. 2016, 16, 1191–1203. DOI: 10.1002/tcr.201600003. (g) Suh, C. W.; Kwon, S. J.; Kim, D. Y. Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences. Org. Lett. 2017, 19, 1334–1337. DOI: 10.1021/acs.orglett.7b00184. (h) Jeong, H. J.; Kim, D. Y. Enantioselective Decarboxylative Alkylation of β-Keto Acids to ortho-Quinone Methides as Reactive Intermediates: Asymmetric Synthesis of 2,4-Diaryl-1-Benzopyrans. Org. Lett. 2018, 20, 2944–2947. DOI: 10.1021/acs.orglett.8b00993. (i) Kim, Y. J.; Kim, D. Y. Electrochemical Oxidative Selenylation of Imidazo [1,2–a] Pyridines with Diselenides. Tetrahedron Lett. 2019, 60, 739–742. DOI: 10.1016/j.tetlet.2019.02.001. (j) Kim, Y. J.; Kim, D. Y. Electrochemical Radical Selenylation/1, 2-Carbon Migration and Dowd–Beckwith-Type Ring-Expansion Sequences of Alkenylcyclobutanols, Org. Lett. 2019, 21, 1021–1025. DOI: 10.1021/acs.orglett.8b04041. (k) Kim, K. S.; Kim, D. Y. Electrochemical C − H Oxidation/Conjugate Addition/Cyclization Sequences of 2-Alkyl Phenols: One-Pot Synthesis of 2-Amino-4H-Chromenes. Asian J. Org. Chem. 2022, 11, e202200486. DOI: 10.1002/ajoc.202200486. (l) Kim, K. S.; Kim, D. Y. Enantioselective One-Pot Synthesis of 2-Amino-4H-Chromenes via C − H Oxidation and Michael Addition/Ring Closure Sequences, Synth. Commun. 2022, 52, 291–299. DOI: 10.1080/00397911.2021.2024572. (m) Jang, J.; Kim, D. Y. Electrochemical N-Centered Radical Addition/Semipinacol Rearrangement Sequence of Alkenyl Cyclobutanols: Synthesis of β-Amino Cyclic Ketones, Asian J. Org. Chem. 2022, 11, e202200531. DOI: 10.1002/ajoc.202200531.
  • For a selection of our recent works on photoredox reactions, see: (a) Kwon, S. J.; Kim, D. Y. Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1-(1-Arylvinyl) Cyclobutanol Derivatives. Org Lett. 2016, 18, 4562–4565. DOI: 10.1021/acs.orglett.6b02201. (b) Kwon, S. J.; Kim, Y. J.; Kim, D. Y. Visible Light Photoredox-Catalyzed Alkylation/Ring Expansion Sequences of 1-(1-Arylvinyl) Cyclobutanol Derivatives. Tetrahedron Lett. 2016, 57, 4371–4374. DOI: 10.1016/j.tetlet.2016.08.047. (c) Kwon, S. J.; Gil, M. K.; Kim, D. Y. Visible Light Mediated Photocatalytic Oxidative Coupling Reaction of N-Phenyl Tetrahydroisoquinoline with β-Keto Acids, Tetrahedron Lett. 2017, 58, 1592–1594. DOI: 10.1016/j.tetlet.2017.03.026. (d) Kim, Y. J.; Kim, D. Y. Visible Light Photoredox-Catalyzed Difluoromethylation and Ring Expansion of 1-(1-Arylvinyl) Cyclobutanols. J. Fluorine. Chem. 2018, 211, 119–123. DOI: 10.1016/j.jfluchem.2018.04.015. (e) Kim, Y.; Kim, D. Y. Visible Light Photoredox-Catalyzed Phosphorylation of Quinoxalin-2(1H)-Ones. Tetrahedron Lett. 2018, 59, 2443–2446. DOI: 10.1016/j.tetlet.2018.05.034. (f) Kwon, S. J.; Jong, H. I.; Kim, D. Y. Visible Light Photoredox‐Catalyzed Arylation of Quinoxalin‐2(1H)‐Ones with Aryldiazonium Salts. ChemistrySelect. 2018, 3, 5824–5827. DOI: 10.1002/slct.201801431. (g) Jong, H. I.; Lee J. H.; Kim, D. Y. Photocatalyst-Free Photoredox Arylation of Quinoxalin-2(1H)-Ones with Aryldiazo Sulfones. Bull. Korean Chem. Soc. 2018, 39, 1003–1006. DOI: 10.1002/bkcs.11530. (h) Jong, H. I.; Kim, D. Y. Synthesis of β-Selenylated Cyclopentanones via Photoredox-Catalyzed Selenylation/Ring-Expansion Cascades of Alkenyl Cyclobutanols. Synlet. 2019, 30, 1361–1365. DOI: 10.1055/s-0037-1611841. (i) Jang, J.; Kim, D. Y. Visible Light Photocatalytic Trifluoromethylation/SET Oxidation/Cycloaddition Sequences of 2-Vinyl Phenols: Multicomponent Synthesis of 4H-Chromenes. Asian J. Org. Chem. 2021, 10, 799–802. DOI: 10.1002/ajoc.202100118. (j) Park, J.; Kim, D. Y. Synthesis of Selenated γ-Lactones via Photoredox-Catalyzed Selenylation and Ring Closure of Alkenoic Acids with Diselenides. Bull. Korean Chem. Soc. 2022, 43, 941–945. DOI: 10.1002/bkcs.12545. (k) Jang, J.; Kim, D. Y. Synthesis of Trifluoromethylated 4H-1-Benzopyran Derivatives via Photocatalytic Trifluoromethylation/Oxidation/Conjugate Addition, and Cyclization Sequences of Vinyl Phenols. Asian J. Org. Chem. 2022, 11, e202200052. DOI: 10.1002/ajoc.202200052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.