234
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The chemical behavior of the different impurities present in Phosphogypsum: a review

ORCID Icon & ORCID Icon
Pages 129-148 | Received 07 Jun 2023, Accepted 27 Sep 2023, Published online: 17 Nov 2023

References

  • Bilal, E.; Bellefqih, H.; Bourgier, V.; Mazouz, H.; Dumitraş, D. G.; Bard, F.; Laborde, M.; Caspar e, J. P.; Guilhot, B.; Iatan, E. L.; et al. Phosphogypsum Circular Economy Considerations: A Critical Review from More than 65 Storage Sites Worldwide. J. Cleaner Prod. 2023, 414, 137561. DOI: 10.1016/j.jclepro.2023.137561.
  • Alaoui-Belghiti, H. E.; Bettach, M.; Zdah, I.; Ennaciri, Y.; Assaoui, J.; Zegzouti, A. Optimization of Conditions to Convert Phosphogypsum into Ca(OH)2 and Na2SO4. Mor. J. Chem. 2020, 8, 8. https://revues.imist.ma/index.php/morjchem/article/view/19328.
  • Es-Said, A.; El Hamdaoui, L.; Ennoukh, F. E.; Nafai, H.; Zerki, N.; Lamzougui, G.; Bchitou, R. Chemometrics Approach for Adsorption Multi-Response Optimization of Cu (II), Zn (II), and Cd (II) Ions from Phosphoric Acid Solution Using Natural Clay. Phosphorus Sulfur Silicon Relat. Elem. 2023, 198, 424–434. DOI: 10.1080/10426507.2022.2164765.
  • Ennaciri, Y.; Cherrat, A.; El Alaoui-Belghiti, H.; Bettach, M. The wet conversion of phosphogypsum by ammonium carbonate: A review. Mor. J. Chem. 2023, 11, 444–459 DOI: 10.48317/IMIST.PRSM/morjchem-v11i2.35817.
  • Francis, S. Green Buildings from Industrial by-Product Phosphogypsum: Transforming Mass Housing in India for Sustainable Future. In Green Buildings and Sustainable Engineering, Springer Transactions in Civil and Environmental Engineering; Drück, H., Pillai, R., Tharian, M., Majeed, A., Eds.; Springer: Singapore, 2019. DOI: 10.1007/978-981-13-1202-1_12.
  • Qi, J.; Zhu, H.; Zhou, P.; Wang, X.; Wang, Z.; Yang, S.; Yang, D.; Li, B. Application of Phosphogypsum in Soilization: A Review. Int. J. Environ. Sci. Technol. 2023, 20, 10449–10464. DOI: 10.1007/s13762-023-04783-2.
  • Ennaciri, Y.; Bettach, M. Comparative Study of the Transformation of Phosphogypsum and Pure Gypsum into Valuables Products. Adv. J. Chem. A 2021, 4, 165–174. DOI: 10.22034/AJCA.2021.273885.1242.
  • Haneklaus, N.; Barbossa, S.; Dolores Basallote, M.; Bertau, M.; Bilal, E.; Chajduk, E.; Chernysh, Y.; Chubur, V.; Cruz, J.; Dziarczykowski, K.; et al. Closing the Upcoming EU Gypsum Gap with Phosphogypsum. Resour. Conserv. Recycl. 2022, 182, 106328–106328. DOI: 10.1016/j.resconrec.2022.106328.
  • El Zrelli, R.; Rabaoui, L.; Daghbouj, N.; Abda, H.; Castet, S.; Josse, C.; Beek, P.; Souhaut, M.; Michel, S.; Bejaoui, N.; Courjault-Radé, P. Characterization of Phosphate Rock and Phosphogypsum from Gabes Phosphate Fertilizer Factories (SE Tunisia): High Mining Potential and Implications for Environmental Protection. Environ. Sci. Pollut. Res. Int. 2018, 25, 14690–14702. DOI: 10.1007/s11356-018-1648-4.
  • Ennaciri, Y.; Bettach, M.; Cherrat, A.; Zdah, I.; El Alaoui-Belghiti, H. Synthèse Bibliographique: étude Des Propriétés Physico-Chimiques du Phosphogypse Marocain. Mater. Tech. 2020, 108, 207. DOI: 10.1051/mattech/2020029.
  • Berish, C. W. Potential Environmental Hazards of Phosphogypsum Storage in Central Florida. In Proceedings of the Third International Symposium on Phosphogypsum, Orlando FL (pp. 1e29). FIPR. Pub No. 01060083,2, 1990.
  • Sebbahi, S.; Chameikh, M. L. O.; Sahban, F.; Aride, J.; Benarafa, L.; Belkbir, L. Thermal Behaviour of Moroccan Phosphogypsum. Thermochim. Acta 1997, 302, 69–75. DOI: 10.1016/S0040-6031(97)00159-7.
  • Mi, Y.; Chen, D.; He, Y.; Wang, S. Morphology‐Controlled Preparation of α‐Calcium Sulfate Hemihydrate from Phosphogypsum by Semi‐Liquid Method. Cryst. Res. Technol 2018, 53, 1700162. DOI: 10.1002/crat.201700162.
  • Ennaciri, Y.; Bettach, M. Procedure to Convert Phosphogypsum Waste into Valuable Products. Mater. Manuf. Processes 2018, 33, 1727–1733. DOI: 10.1080/10426914.2018.1476763.
  • Canut, M. M. C.; Jacomino, V. M. F.; Bråtveit, K.; Gomes, A. M.; Yoshida, M. I. Microstructural Analyses of Phosphogypsum Generated by Brazilian Fertilizer Industries. Mater. Charact 2008, 59, 365–373. DOI: 10.1016/j.matchar.2007.02.001.
  • Taneja, C. A.; Singh, M. Evaluation of Suitability of Phosphogypsum for Use in Preparation of Different Building-Materials. Res. Ind 1976, 21, 263–265.
  • Michalak, I.; Chojnacka, K. Fluorine and Silicon as Essential and Toxic Trace Elements. In Recent Advances in Trace Elements, Chojnacka, K., Saeid, A., Eds.; John Wiley & Sons Ltd: New Jersey, 2018; Vol. 10, pp 207–218. DOI: 10.1002/9781119133780.ch10.
  • Rentería-Villalobos, M.; Vioque, I.; Mantero, J.; Manjón, G. Radiological, Chemical and Morphological Characterizations of Phosphate Rock and Phosphogypsum from Phosphoric Acid Factories in SW Spain. J. Hazard. Mater. 2010, 181, 193–203. DOI: 10.1016/j.jhazmat.2010.04.116.
  • López, F. A.; Tayibi, H.; García-Díaz, I.; Alguacil, F. J. Thermal Dehydration Kinetics of Phosphogypsum. Mater. Construcc. 2015, 65, e061. DOI: 10.3989/mc.2015.07214.
  • Strydom, C. A.; Potgieter, J. H. Dehydration Behavior of a Natural Gypsum and Phosphogypsum during Milling. Thermochim. Acta 1999, 332, 89–96. DOI: 10.1016/S0040-6031(99)00083-0.
  • Walawalkar, M. Extraction of Rare Earth Elements from Phosphogypsum (Fertilizer Production by-Product). Ph.D. Dissertation, University of Toronto, Department of Chemical. Engineering and Applied Chemistry, Canada, 2016.
  • Hanna, A. A.; Akarish, A. I. M.; Ahmed, S. M. Phosphogypsum: Part I: Mineralogical, Thermogravimetric, Chemical and Infrared Characterization. J. Mater. Sci. Technol. 1999, 5, 431–434.
  • Matta, S.; Stephan, K.; Stephan, J.; Lteif, R.; Goutaudier, C.; Saab, J. Phosphoric Acid Production by Attacking Phosphate Rock with Recycled Hexafluosilicic Acid. Int. J. Miner. Process 2017, 161, 21–27. DOI: 10.1016/j.minpro.2017.02.008.
  • Grabas, K.; Pawełczyk, A.; Stręk, W.; Szełęg, E.; Stręk, S. Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste Biomass Valor. 2019, 10, 3143–3155. DOI: 10.1007/s12649-018-0316-8.
  • Bourgier, V. Influence des ions monohydrogénophosphates et fluorophosphates sur les propriétés des phosphogypses et la réactivité des phosphoplâtres. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines de Saint-Etienne, France, 2007.
  • Ennaciri, Y.; Bettach, M.; Cherrat, A.; Zegzouti, A. Conversion of Phosphogypsum to Sodium Sulfate and Calcium Carbonate in Aqueous Solution. J. Mater. Enviro. Sci. 2016, 7, 1925–1933.
  • Stefaniak, E. A.; Alsecz, A.; Frost, R.; Máthé, Z.; Sajó, I. E.; Török, S.; Worobiec, A.; Van Grieken, R. Combined SEM/EDX and Micro-Raman Spectroscopy Analysis of Uranium Minerals from a Former Uranium Mine. J. Hazard. Mater. 2009, 168, 416–423. DOI: 10.1016/j.jhazmat.2009.02.057.
  • Ennaciri, Y.; Zdah, I.; El Alaoui-Belghiti, H.; Bettach, M. Characterization and Purification of Waste Phosphogypsum to Make it Suitable for Use in the Plaster and the Cement Industry. Chem. Eng. Commun. 2020, 207, 382–392. DOI: 10.1080/00986445.2019.1599865.
  • Akfas, F.; Elghali, A.; Bodinier, J. L.; Parat, F.; Muñoz, M. Geochemical and Mineralogical Characterization of Phosphogypsum and Leaching Tests for the Prediction of the Mobility of Trace Elements. Environ. Sci. Pollut. Res. Int. 2023, 30, 43778–43794. DOI: 10.1007/s11356-023-25357-2.
  • Zou, C.; Shi, Z.; Yang, Y.; Zhang, J.; Hou, Y.; Zhang, N. The Characteristics, Enrichment, and Migration Mechanism of Cadmium in Phosphate Rock and Phosphogypsum of the Qingping Phosphate Deposit, Southwest China. Miner 2023, 13, 107. DOI: 10.3390/min13010107.
  • Kandil, A. H. T.; Cheira, M. F.; Gado, H. S.; Soliman, M. H.; Akl, H. M. Ammonium Sulfate Preparation from Phosphogypsum Waste. J. Radiat. Res. Appl. Sci. 2017, 10, 24–33. DOI: 10.1016/j.jrras.2016.11.001.
  • Şenol, A. Effects of Calcined Phosphogypsum on the Geotechnical Parameters of Fine-Grained Soils. Cumhuriyet. Sci. J. 2019, 40, 768–775. DOI: 10.17776/csj.523979.
  • James, J.; Vijayasimhan, S.; Eyo, E. Stress-Strain Characteristics and Mineralogy of an Expansive Soil Stabilized Using Lime and Phosphogypsum. Appl. Sci. 2022, 13, 123. DOI: 10.3390/app13010123.
  • Nguyen, N. L.; Le Vu, P. Eco-Friendly Super Sulphated Cement Concrete Using Vietnam Phosphogypsum and Sodium Carbonate Na2CO3. Civ. Eng. J. 2022, 8, 2445–2460. DOI: 10.28991/CEJ-2022-08-11-06.
  • Jancev, M.; Boev, I.; Stojanovska, Z.; Boev, B. Characterization of Phosphogypsum from Dumps of Veles Phosphate Fertilizer Factory (North Macedonia) and Environmental Implications. Geol. Macedonica 2019, 33, 111–124.
  • Kapustin, F.; Mityushov, N.; Bednyagin, S. Composition, Properties And Using Fields of Product of Phosphogypsum Recycling. In: IV Congress “Fundamental Research and Applied Developing of Recycling and Utilization Processes of Technogenic Formations”, KnE Materials Science, Yekaterinburg, Russia, 2020; pp 150–155. DOI: 10.18502/kms.v6i1.8060.
  • Yelatontsev, D.; Mukhachev, A. Utilizing of Sunflower Ash in the Wet Conversion of Phosphogypsum–a Comparative Study. Environ. Challenges 2021, 5, 100241. DOI: 10.1016/j.envc.2021.100241.
  • Qin, L.; Luo, K. B.; Li, H. P.; Zhao, X. J. Comparison of the Determination Methods for the Calcium Sulfate Content in Phosphogypsum. Adv. Mate. Res., 2014, 1051, 135–138. DOI: 10.4028/www.scientific.net/AMR.1051.135.
  • Azabou, S.; Mechichi, T.; Sayadi, S. Sulfate Reduction from Phosphogypsum Using a Mixed Culture of Sulfate-Reducing Bacteria. Int. Biodeterior. Biodegrad. 2005, 56, 236–242. DOI: 10.1016/j.ibiod.2005.09.003.
  • Teiri, H.; Rezaei, M.; Nazmara, S.; Hajizadeh, Y. Sulphate Reduction and Zinc Precipitation from Wastewater by Sulphate-Reducing Bacteria in an Anaerobic Moving-Liquid/Static-Bed Bioreactor. Desalin. Water. Treat 2016, 57, 25617–25626. DOI: 10.1080/19443994.2016.1153983.
  • Mangin, S.; Astesan, A.; Andrieux, P.; Colombel, J.; Bivert, B.; Dron, R.; Vigea, G. Le Phosphogypse-Utilisation D'un Sous-Produit Industriel En Technique Routiere. Bull. liaison. Lab. ponts. Chauss 1978, VII, 143.
  • Rutherford, P. M.; Dudas, M. J.; Samek, R. A. Environmental Impacts of Phosphogypsum. Sci. Total. Environ. 1994, 149, 1–38. DOI: 10.1016/0048-9697(94)90002-7.
  • Ennaciri, Y.; El Alaoui-Belghiti, H.; Bettach, M. Comparative Study of K2SO4 Production by Wet Conversion from Phosphogypsum and Synthetic Gypsum. J. Mater. Res. Technol. 2019, 8, 2586–2596. DOI: 10.1016/j.jmrt.2019.02.013.
  • Alla, M.; Harrou, A.; Elhafiany, M. L.; Azerkane, D.; El Ouahabi, M.; Gharibi, E. K. Reduction of Phosphogypsum to Calcium Sulfide (CaS) Using Metallic Iron in a Hydrochloric Acid Medium. Phosphorus Sulfur Silicon Relat. Elem 2022, 197, 1026–1035. DOI: 10.1080/10426507.2022.2052881.
  • Mandal, P. K.; Mandal, T. K. Anion Water in Gypsum (CaSO4·2H2O) and Hemihydrate (CaSO4·1/2H2O). Cem. Concr. Res. 2002, 32, 313–316. DOI: 10.1016/S0008-8846(01)00675-5.
  • Ennaciri, Y.; Bettach, M.; El Alaoui-Belghiti, H. Phosphogypsum Conversion into Calcium Fluoride and Sodium Sulfate. ACSM. 2020, 44, 407–412. DOI: 10.18280/acsm.440606.
  • Iancu, A. M.; Marincea, Ş.; Dumitraş, D. G.; Anason, M. A.; Călin, N. Mineralogical and geochemical peculiarities of phosphogypsum from turnu măgurele (romania). https://www.researchgate.net/profile/Stefan-Marincea/publication/344586547 (accessed Mar 13, 2023).
  • Rychkov, E.; Kırıllov, S.; Kırıllov, G.; Bunkov, M.; Bolatov, D.; Smyshlyaev Ve.; P.; Koukkari. Recovery of Rare Earth Elements and Scandium. As Side Products of Uranium. and Phosphates. European Rare Earth Resource (ERES) conference; Book of Abstracts, Santorini, Greece, 2017.
  • Manar, S. Increasing the Filtration Rate of Phosphor-Gypsum by Using Mineral Additives. Procedia Eng. 2016, 138, 151–163. DOI: 10.1016/j.proeng.2016.02.073.
  • Al Attar, L.; Al-Oudat, M.; Kanakri, S.; Budeir, Y.; Khalily, H.; Al Hamwi, A. Radiological Impacts of Phosphogypsum. J. Environ. Manage. 2011, 92, 2151–2158. DOI: 10.1016/j.jenvman.2011.03.041.
  • Freyer, D.; Voigt, W. Crystallization and Phase Stability of CaSO4 and CaSO4–Based Salts. Chem. Mon 2003, 134, 693–719. DOI: 10.1007/s00706-003-0590-3.
  • Van Der Sluis, S.; Witkamp, G. J.; Van Rosmalen, G. M. Crystallization of Calcium Sulfate in Concentrated Phosphoric Acid. J. Cryst. Growth 1986, 79, 620–629. DOI: 10.1016/0022-0248(86)90529-4.
  • Burnett, W. C.; Elzerman, A. W. Nuclide Migration and the Environmental Radiochemistry of Florida Phosphogypsum. J. Environ. Radioact. 2001, 54, 27–51. DOI: 10.1016/S0265-931X(00)00164-8.
  • Kazragis, A. High‐Temperature Decontamination and Utilization of Phosphogypsum. J. Environ. Eng. Landscape. Manage. 2004, 12, 138–145. DOI: 10.1080/16486897.2004.9636835.
  • Macías, F.; Cánovas, C. R.; Cruz-Hernández, P.; Carrero, S.; Asta, M. P.; Nieto, J. M.; Pérez-López, R. An Anomalous Metal-Rich Phosphogypsum: Characterization and Classification according to International Regulations. J. Hazard. Mater. 2017, 331, 99–108. DOI: 10.1016/j.jhazmat.2017.02.015.
  • Adams, J. F.; Papangelakis, V. G. Gypsum Scale Formation in Continuous Neutralization Reactors. Can. Metall. Q 2000, 39, 421–432. DOI: 10.1179/cmq.2000.39.4.421.
  • Birky, B. K. Phosphorus and Phosphates. In Handbook of Industrial Chemistry and Biotechnology. Kent, J. A., Bommaraju, T. V., Barnick, S. D., Eds., Springer International Publishing AG: Cham, Switzerland, 2017, pp 1211–1239. DOI: 10.1007/978-3-319-52287-6_20.
  • Baudet, G. Etude Documentaire Sur Les Possibilités D’élimination De Cadmium à Partir De Concentrés De Phosphate. Rapport BRGM, 1992. R35890, 1–43.
  • Rabizadeh, T.; Stawski, T. M.; Morgan, D. J.; Peacock, C. L.; Benning, L. G. The Effects of Inorganic Additives on the Nucleation and Growth Kinetics of Calcium Sulfate Dihydrate Crystals. Cryst. Growth. Des 2017, 17, 582–589. DOI: 10.1021/acs.cgd.6b01441.
  • Mao, X.; Song, X.; Lu, G.; Sun, Y.; Xu, Y.; Yu, J. Effects of Metal Ions on Crystal Morphology and Size of Calcium Sulfate Whiskers in Aqueous HCl Solutions. Ind. Eng. Chem. Res. 2014, 53, 17625–17635. DOI: 10.1021/ie5030134.
  • Dorozhkin, S. V. Fundamentals of the Wet-Process Phosphoric Acid Production 1 Kinetics and Mechanism of the Phosphate Rock Dissolution. Ind. Eng. Chem. Res. 1996, 35, 4328–4335. DOI: 10.1021/ie960092u.
  • Kijkowska, R.; Pawlowska-Kozinska, D.; Kowalski, Z.; Jodko, M.; Wzorek, Z. Wet-Process Phosphoric Acid Obtained from Kola Apatite Purification from Sulphates, Fluorine, and Metals. Sep. Purif. Technol 2002, 28, 197–205. DOI: 10.1016/S1383-5866(02)00048-5.
  • Kurteva, O. I.; Brutskus, E. B. Solubilities of Calcium Sulfate in H3PO4+ H2SO4 and H3PO4+ H2SiF6 Acid Mixtures. Zh. Prikl. Khim 1961, 34, 1714–1718.
  • Cánovas, C. R.; Macías, F.; López, R. P.; Nieto, J. M. Mobility of Rare Earth Elements, Yttrium and Scandium from a Phosphogypsum Stack: Environmental and Economic Implications. Sci. Total Environ. 2018, 618, 847–857. DOI: 10.1016/j.scitotenv.2017.08.220.
  • Ennaciri, Y.; Bettach, M.; El Alaoui-Belghiti, H. Recovery of Nano-Calcium Fluoride and Ammonium Bisulphate from Phosphogypsum Waste. Int. J. Environ. Stud 2020, 77, 297–306. DOI: 10.1080/00207233.2020.1737426.
  • Ennaciri, Y.; Bettach, M.; El Alaoui-Belghiti, H. Conversion of Moroccan Phosphogypsum Waste into Nano-Calcium Fluoride and Sodium Hydrogen Sulfate Monohydrate. J. Mater. Cycles Waste Manag. 2020, 22, 2039–2047. DOI: 10.1007/s10163-020-01088-1.
  • Lehr, J. R.; Frazier, A. W.; Smith, J. P. Phosphoric Acid Impurities, Precipated Impurities in Wet-Process Phosphoric Acid. J. Agric. Food Chem. 1966, 14, 27–33. DOI: 10.1021/jf60143a009.
  • Höllriegl, V.; München, H. Z. Strontium in the Environment and Possible Human Health Effects. Encycl. Environ. Health 2011, 5, 268–275. DOI: 10.1016/b978-0-444-52272-6.00638-3.
  • Miller, E. K.; Blum, J. D.; Friedland, A. J. Determination of Soil Exchangeable-Cation Loss and Weathering Rates Using Sr Isotopes. Nat 1993, 362, 438–441. DOI: 10.1038/362438a0.
  • Pett-Ridge, J. C.; Derry, L. A.; Barrows, J. K. Ca/Sr and 87Sr/86Sr Ratios as Tracers of Ca and Sr Cycling in the Rio Icacos Watershed, Luquillo Mountains, Puerto Rico. Chem. Geol. 2009, 267, 32–45. DOI: 10.1016/j.chemgeo.2008.11.022.
  • Arocena, J. M.; Rutherford, P. M.; Dudas, M. J. Heterogeneous Distribution of Trace Elements and Fluorine in Phosphogypsum by-Product. Sci. Total. Environ. 1995, 162, 149–160. DOI: 10.1016/0048-9697(95)04446-8.
  • Castorina, F.; Masi, U. The Sr-Isotope Composition of Soils: A Case Study from Muravera (SE Sardinia, Italy). J. Geochem. Explor. 2008, 96, 86–93. DOI: 10.1016/j.gexplo.2007.03.002.
  • Zhang, T.; Gregory, K.; Hammack, R. W.; Vidic, R. D. Co-Precipitation of Radium with Barium and Strontium Sulfate and Its Impact on the Fate of Radium during Treatment of Produced Water from Unconventional Gas Extraction. Environ. Sci. Technol. 2014, 48, 4596–4603. DOI: 10.1021/es405168b.
  • Wang, M.; Luo, H.; Chen, Y.; Yang, J. Leaching Characteristics of Calcium and Strontium from Phosphogypsum under Acid Rain. Bull. Environ. Contam. Toxicol. 2018, 100, 310–315. DOI: 10.1007/s00128-017-2218-z.
  • Alaoui-Belghiti, H. E.; Zdah, I.; Ennaciri, Y.; Ouatib, R. E.; Bettach, M. Valorisation of Phosphogypsum Waste as K2SO4 Fertiliser and Portlandite Ca(OH)2. IJEWM. 2021, 27, 363–377. DOI: 10.1504/IJEWM.2021.114421.
  • Aliedeh, M. A. Factorial Design Study of P2O5 Reduction for Jordanian Phosphogypsum Using Sulfuric and Nitric Acids Solutions. J. Chem. Technol. Metall. 2018, 53, 437–450.
  • Chandra, S. Waste Materials Used in Concrete Manufacturing; Noyes Publications: Westwood, NJ, 1997.
  • El Cadi, A.; Fakih Lanjri, A.; Lalilti, A.; Chouaibi, N.; Asskali, A.; Khaddor, M. Caractérisation de la fraction lipidique du phosphogypse: origine et évaluation du degré de transformation des polluants organiques (Characterization of the Lipid Fraction of Phosphogypsum: Origin and Assessment of the Degree of Transformation of Organic Pollutants). J. Mater. Environ. Sci. 2014, 5, 2223–2229.
  • Macías, F.; Pérez-López, R.; Cánovas, C. R.; Carrero, S.; Cruz-Hernandez, P. () Environmental Assessment and Management of Phosphogypsum according to European and United States of America Regulations. Proc. Earth. Planet. Sci 2017, 17, 666–669. DOI: 10.1016/j.proeps.2016.12.178.
  • Zdah, I.; El Alaoui-Belghiti, H.; Cherrat, A.; Ennaciri, Y.; Brahmi, R.; Bettach, M. Temperature Effect on Phosphogypsum Conversion into Potassium Fertilizer K2SO4 and Portlandite. Nanotechnol. Environ. Eng. 2021, 6, 27. DOI: 10.1007/s41204-021-00122-3.
  • Al-Hwaiti, M. S. Contamination of Potentially Trace Metals in Aqaba and Eshidiya Phosphogypsum in Jordan. Int. J. Econ. Environ. Geol. 2005, 1, 35–42.
  • Gaudry, A.; Zeroual, S.; Gaie-Levrel, F.; Moskura, M.; Boujrhal, F. Z.; El Moursli, R. C.; Guessous, A.; Mouradi, A.; Givernaud, T.; Delmas, R. Heavy Metals Pollution of the Atlantic Marine Environment by the Moroccan Phosphate Industry, as Observed through Their Bioaccumulation in Ulva Lactuca. Water. Air. Soil Pollut. 2007, 178, 267–285. DOI: 10.1007/s11270-006-9196-9.
  • Cánovas, C. R.; Chapron, S.; Arrachart, G.; Pellet-Rostaing, S. Leaching of Rare Earth Elements (REEs) and Impurities from Phosphogypsum: A Preliminary Insight for Further Recovery of Critical Raw Materials. J. Cleaner. Prod. 2019, 219, 225–235. DOI: 10.1016/j.jclepro.2019.02.104.
  • Rashid, W.; Alkadir, I.; Jalhom, M. The Solubility of Phosphogypsum and Recovery of Heavy and Radioactive Elements. ETJ. 2020, 38, 1470–1480. DOI: 10.30684/etj.v38i10A.907.
  • Bituh, T.; Petrinec, B.; Skoko, B.; Babić, D.; Rašeta, D. Phosphogypsum and Its Potential Use in Croatia: Challenges and Opportunities. Arh. Hig. Rada Toksikol. 2021, 72, 93–100. DOI: 10.2478/aiht-2021-72-3504.
  • Lütke, S. F.; Oliveira, M. L.; Silva, L. F.; Cadaval, T. R., Jr.; Dotto, G. L. Nanominerals Assemblages and Hazardous Elements Assessment in Phosphogypsum from an Abandoned Phosphate Fertilizer Industry. Chemosphere 2020, 256, 127138. DOI: 10.1016/j.chemosphere.2020.127138.
  • Grandia, F.; Merino, J.; Bruno, J. Assessment of the Radium-Barium co-Precipitation and Its Potential Influence on the Solubility of Ra in the near-Field (No SKB-TR–08-07); Swedish Nuclear Fuel and Waste Management Co: Stockholm, Sweden, 2008.
  • Goldschmidt, B. Sur la Precipitation Mixte Des Sulfates De Baryum Et De Strontium. Compt. Rend. Paris. Acad. des. Sci. 1938, 206, 1110.
  • Bruno, J.; Bosbach, D.; Kulik, D.; Navrotsky, A. Chemical Thermodynamics of Solid Solutions of Interest in Nuclear Waste Management; Chemical Thermodynamics Series No. 10 Nuclear Energy Agency (NEA). OECD Publishing: Paris, France, 2007.
  • McClellan, G. H.; Gremillion, L. R. Evaluation of Phosphoric Raw Materials. In The Role of Phosphorous in Agriculture; Khasawneh, F. E.; Sample, E. C.; Kamprath, E. J., Eds.; Soil Sci. Soc. Am.: Madison, WI, 1980; pp 43–80. DOI: 10.2134/1980.roleofphosphorus.c3.
  • Kybartienė, N.; Leškevičienė, V.; Valančius, Z. Influence of Ce3+ on the Formation of α- Semi-Hydrate Gypsum. Mater. Sci. (Medžiagotryra) 2012, 18, 385–389. DOI: 10.5755/j01.ms.18.4.3102.
  • Bech, J.; Suarez, M.; Reverter, F.; Tume, P.; Sánchez, P.; Bech, J.; Lansac, A. Selenium and Other Trace Elements in Phosphate Rock of Bayovar–Sechura (Peru). J. Geochem. Explor 2010, 107, 136–145. DOI: 10.1016/j.gexplo.2009.08.004.
  • Altschuler, Z. S. The Geochemistry of Trace Elements in Marine Phosphorites: Part I Characteristic Abundances and Enrichment. Soc. Econ. Paleontol. Mineralogists 1980, 29, 19–30.
  • Lin, J.; Chen, N.; Feng, R.; Nilges, M. J.; Jia, Y.; Wang, S.; Pan, Y. Sequestration of Selenite and Selenate in Gypsum (CaSO4·2H2O): Insights from the Single-Crystal Electron Paramagnetic Resonance Spectroscopy and Synchrotron x-Ray Absorption Spectroscopy Study. Environ. Sci. Technol. 2020, 54, 3169–3180. DOI: 10.1021/acs.est.9b05714.
  • Fernández-González, A.; Andara, A.; Alía, J. M.; Prieto, M. Miscibility in the CaSO4· 2H2O–CaSeO4· 2H2O System: Implications for the Crystallisation and Dehydration Behaviour. Chem. Geol. 2006, 225, 256–265. DOI: 10.1016/j.chemgeo.2005.08.019.
  • Lamzougui, G.; Nafai, H.; Bouhaouss, A.; Bchitou, R. Détermination De la Teneur Maximale Des Métaux Lourds Dans le Phosphogypse (Determination of the Maximum Content of Heavy Metals in the Phosphogypsum). J. Mater. Enviro. Sci 2016, 6, 2161–2169.
  • Cao, X.; Ma, L. Q.; Rhue, D. R.; Appel, C. S. Mechanisms of Lead, Copper, and Zinc Retention by Phosphate Rock. Environ. Pollut. 2004, 131, 435–444. DOI: 10.1016/j.envpol.2004.03.003.
  • Eid, R.; Maatouk, E.; Samrani, A. E.; Azzi, V.; Bassil, J. Characterisation of Zinc-Bearing Sulphate Phases Formed during the Synthesis of Phosphoric Acid and Zinc Removal by the Ligands of Opuntia Ficus-Indica. Environ. Technol. 2022, 43, 4125–4136. DOI: 10.1080/09593330.2021.1943001.
  • Cesur, H.; Balkaya, N. Zinc Removal from Aqueous Solution Using an Industrial by-Product Phosphogypsum. Chem. Eng. Process 2007, 131, 203–208. DOI: 10.1016/j.cej.2006.11.010.
  • Cao, R.; Li, Y.; Xia, J.; Chen, Z.; Yang, J. NiSO4 as Additive Effect on the Carbothermal Reduction Process of Phosphate Rock and SiO2. Silicon 2019, 11, 2829–2836. DOI: 10.1007/s12633-019-0071-x.
  • Saueia, C. H. R.; Mazzilli, B. P. Distribution of Natural Radionuclides in the Production and Use of Phosphate Fertilizers in Brazil. J. Environ. Radioact. 2006, 89, 229–239. DOI: 10.1016/j.jenvrad.2006.05.009.
  • Fernández-Martínez, A.; Cuello, G. J.; Johnson, M. R.; Bardelli, F.; Román-Ross, G.; Charlet, L.; Turrillas, X. Arsenate Incorporation in Gypsum Probed by Neutron, X-Ray Scattering and Density Functional Theory Modeling. J. Phys. Chem. A 2008, 112, 5159–5166. DOI: 10.1021/jp076067r.
  • Ennaciri, Y.; Mouahid, F. E.; Bendriss, A.; Bettach, M. Conversion of Phosphogypsum to Potassium Sulfate and Calcium Carbonate in Aqueous Solution. MATEC. Web. Conf 2013, 5, 04006. DOI: 10.1051/matecconf/20130504006.
  • Rusek, P.; Mikos‐Szymańska, M. Industrial Use of Trace Elements and Their Impact on the Workplace and the Environment. In Recent Advances in Trace Elements, Chojnacka, K., Saeid, A., Eds., John Wiley & Sons Ltd: New Jersey, USA, 2018; Vol. 24, pp 481–499. DOI: 10.1002/9781119133780.ch24.
  • Wang, S.; Zhang, D.; Li, X.; Zhang, G.; Wang, Y.; Wang, X.; Gomez, M. A.; Jia, Y. Arsenic Associated with Gypsum Produced from Fe (III)-as (V) coprecipitation: Implications for the Stability of Industrial as-Bearing Waste. J. Hazard. Mater. 2018, 360, 311–318. DOI: 10.1016/j.jhazmat.2018.08.017.
  • Filippou, D.; Demopoulos, G. P. Arsenic Immobilization by Controlled Scorodite Precipitation. Jom 1997, 49, 52–55. DOI: 10.1007/s11837-997-0034-3.
  • Kirkham, M. B. Principles of Soil and Plant Water Relations; Elsevier: Burlington, MA; San Diego, California, 2005.
  • Cherrat, A.; Bettach, M.; Ennaciri, Y.; El Alaoui-Belghiti, H.; Benkhouja, K. Wet Synthesis of High Purity Crystalline Urea Phosphate from Untreated Moroccan Industrial Phosphoric Acid. Mor. J. Chem. 2020, 8, 8.
  • Chafik, D.; Bchitou, R.; Bouhaouss, A. Modélisation Et Optimisation du Procédé De la Fabrication De L’acide Phosphorique En Présence Des Ions Métalliques Cu, Zn, Et Cd. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 353–360. DOI: 10.1080/10426507.2013.819865.
  • Shi, X.; Zhang, C.; Wang, H.; Zhang, F. Effect of Si on the Distribution of Cd in Rice Seedlings. Plant Soil 2005, 272, 53–60. DOI: 10.1007/s11104-004-3920-2.
  • Weggler, K.; McLaughlin, M. J.; Graham, R. D. Effect of Chloride in Soil Solution on the Plant Availability of Biosolid‐Borne Cadmium. J. Environ. Qual. 2004, 33, 496–504. DOI: 10.2134/jeq2004.4960.
  • Pierzynski, G. M.; Hettiarachchi, G. M. Method for in-Situ Immobilization and Reduction of Metal Bioavailability in Contaminated Soils, Sediments, and Wastes. United States Patent No. 6 2002, 383, 128.
  • Brown, S.; Chaney, R.; Hallfrisch, J.; Ryan, J. A.; Berti, W. R. In Situ Soil Treatments to Reduce the Phyto‐and Bioavailability of Lead, Zinc, and Cadmium. J. Environ. Qual. 2004, 33, 522–531. DOI: 10.2134/jeq2004.5220.
  • Altaş, L.; Balkaya, N.; Cesur, H. Pb (II) Removal from Aqueous Solution and Industrial Wastewater by Raw and Lime-Conditioned Phosphogypsum. Int. J. Environ. Res. 2017, 11, 111–123. DOI: 10.1007/s41742-017-0012-8.
  • Nriagu, J. O. Lead Orthophosphates-IV Formation and Stability in the Environment. Geochim. Cosmochim. Acta 1974, 38, 887–898. DOI: 10.1016/0016-7037(74)90062-3.
  • Silva, N. C.; Fernandes, E. A. N.; Cipriani, M.; Taddei, M. H. T. The Natural Radioactivity of Brazilian Phosphogypsum. J. Radioanal. Nucl. Chem. 2001, 249, 251–255. DOI: 10.1023/a:1013215215484.
  • Chrysochoou, M.; Dermatas, D.; Grubb, D. G. Phosphate Application to Firing Range Soils for Pb Immobilization: The Unclear Role of Phosphate. J. Hazard. Mater. 2007, 144, 1–14. DOI: 10.1016/j.jhazmat.2007.02.008.
  • Rytuba, J. J. Mercury from Mineral Deposits and Potential Environmental Impact. Env. Geol. 2003, 43, 326–338. DOI: 10.1007/s00254-002-0629-5.
  • Cossa, D.; Elbaz-Poulichet, F.; Nieto, J. M. Mercury in the Tinto-Odiel Estuarine System (Gulf of Cádiz, Spain): Sources and Dispersion. Aquat. Geochem 2001, 7, 1–12. DOI: 10.1023/A:1011392817453.
  • Elbaz-Poulichet, F.; Dupuy, C. Behaviour of Rare Earth Elements at the Freshwater–Seawater Interface of Two Acid Mine Rivers: The Tinto and Odiel (Andalucia, Spain). Appl. Geochem. 1999, 14, 1063–1072. DOI: 10.1016/S0883-2927(99)00007-4.
  • Zhu, Y.; Ma, L. Q.; Gao, B.; Bonzongo, J. C.; Harris, W.; Gu, B. Transport and Interactions of Kaolinite and Mercury in Saturated Sand Media. J. Hazard. Mater. 2012, 213–214, 93–99. DOI: 10.1016/j.jhazmat.2012.01.061.
  • Kotaś, J.; Stasicka, Z. J. E. P. Chromium Occurrence in the Environment and Methods of Its Speciation. Environ. Pollut. 2000, 107, 263–283. DOI: 10.1016/S0269-7491(99)00168-2.
  • Ning, P.; Shi, L.; Yang, Y. H.; Cheng, Y. Chromium Removal from Aqueous Solution by Microwave-Modified Phosphogypsum. AMR. 2014, 955–959, 16–20. DOI: 10.4028/www.scientific.net/AMR.955-959.16.
  • De Vreugd, C. H.; Witkamp, G. J.; Van Rosmalen, G. M. Growth of Gypsum III Influence and Incorporation of Lanthanide and Chromium Ions. J. Cryst. Growth 1994, 144, 70–78. DOI: 10.1016/0022-0248(94)90012-4.
  • Gulbrandsen, R. A. Chemical Composition of Phosphorites of the Phosphoria Formation. Geochim. Cosmochim. Acta 1966, 30, 769–778. DOI: 10.1016/0016-7037(66)90131-1.
  • Çoruh, S.; Elevli, S.; Şenel, G.; Ergun, O. N. Adsorption of Silver from Aqueous Solution onto Fly Ash and Phosphogypsum Using Full Factorial Design. Env. Prog. and Sustain. Energy 2011, 30, 609–619. DOI: 10.1002/ep.10521.
  • Rakhila, Y.; Elmchaouri, A.; Mestari, A.; Korili, S.; Abouri, M.; Gil, A. Adsorption Recovery of Ag (I) and Au (III) from an Electronics Industry Wastewater on a Clay Mineral Composite. Int. J. Miner. Metall. Mater. 2019, 26, 673–680. DOI: 10.1007/s12613-019-1777-x.
  • Ennaciri, Y.; Bettach, M. Optimization of Phosphogypsum Conversion into Calcium Carbonate and Lithium Sulfate Monohydrate. Mater. Tech 2021, 109, 202. DOI: 10.1051/mattech/2021020.
  • Zdah, I.; Azifa, A.; Ennaciri, Y.; Cherrat, A.; El Alaoui-Belghiti, H.; Bettach, M. Green Method of Phosphogypsum Waste Conversion to Lithium Sulfate Monohydrate and Calcium Hydroxide. Sustainable Chem. Pharm 2022, 30, 100850. DOI: 10.1016/j.scp.2022.100850.
  • Cánovas, C. R.; Pérez-López, R.; Macías, F.; Chapron, S.; Nieto, J. M.; Pellet-Rostaing, S. Exploration of Fertilizer Industry Wastes as Potential Source of Critical Raw Materials. J. Clean. Prod 2017, 143, 497–505. DOI: 10.1016/j.jclepro.2016.12.083.
  • El Zrelli, R.; Baliteau, J. Y.; Yacoubi, L.; Castet, S.; Grégoire, M.; Fabre, S.; Sarazin, V.; Daconceicao, L.; Courjault-Radé, P.; Rabaoui, L. Rare Earth Elements Characterization Associated to the Phosphate Fertilizer Plants of Gabes (Tunisia, Central Mediterranean Sea): Geochemical Properties and Behavior, Related Economic Losses, and Potential Hazards. Sci. Total Environ. 2021, 791, 148268. DOI: 10.1016/j.scitotenv.2021.148268.
  • AMR Minerals Inc. Rare Earth Elements: Enablers of High – Tech Applications & Green Energy Technologies. http://amrmineralmetal.com/. (Accessed 18 December, 2013).
  • Binnemans, K.; Jones, P. T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards Zero-Waste Valorisation of Rare-Earth-Containing Industrial Process Residues: A Critical Review. J. Cleaner Prod. 2015, 99, 17–38. DOI: 10.1016/j.jclepro.2015.02.089.
  • Habashi, F. The Recovery of the Lanthanides from Phosphate Rock. J. Chem. Tech. Biotechnol. 1985, 35, 5–14. DOI: 10.1002/jctb.5040350103.
  • Santos, A. J. G.; Mazzilli, B. P.; Fávaro, D. I. T.; Silva, P. S. C. Partitioning of Radionuclides and Trace Elements in Phosphogypsum and Its Source Materials Based on Sequential Extraction Methods. J. Environ. Radioact. 2006, 87, 52–61. DOI: 10.1016/j.jenvrad.2005.10.008.
  • Köhler, S. J.; Harouiya, N.; Chaïrat, C.; Oelkers, E. H. Experimental Studies of REE Fractionation during Water–Mineral Interactions: REE Release Rates during Apatite Dissolution from pH 2 8 to 9. Chem. Geol. 2005, 222, 168–182. DOI: 10.1016/j.chemgeo.2005.07.011.
  • Michaelides, K.; Ibraim, I.; Nord, G.; Esteves, M. Tracing Sediment Redistribution across a Break in Slope Using Rare Earth Elements. Earth. Surf. Processes Landforms 2010, 35, 575–587. DOI: 10.1002/esp.1956.
  • Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of Lanthanides on Smectite and Kaolinite. Chem. Geol. 2002, 182, 57–68. DOI: 10.1016/S0009-2541(01)00283-2.
  • Dutra, C. V.; Formoso, M. L. L. Considerações Sobre Os Elementos Terras Raras em Apatitas. Geochim. Bras 1995, 9, 185–199.
  • de Oliveira, S. M. B.; da Silva, P. S. C.; Mazzilli, B. P.; Favaro, D. I. T.; Saueia, C. H. Rare Earth Elements as Tracers of Sediment Contamination by Phosphogypsum in the Santos Estuary, Southern Brazil. Appl. Geochem. 2007, 22, 837–850. DOI: 10.1016/j.apgeochem.2006.12.017.
  • Lokshin, E. P.; Tareeva, O. A.; Elizarova, I. R. Features of Behavior of Thorium at Sulfuric Acid Processing of Phosphogypsum. Russ. J. Appl. Chem. 2014, 87, 1254–1259. DOI: 10.1134/S1070427214090110.
  • Hammas-Nasri, I.; Horchani-Naifer, K.; Férid, M.; Barca, D. Production of a Rare Earths Concentrate after Phosphogypsum Treatment with Dietary NaCl and Na2CO3 Solutions. Miner. Eng 2019, 132, 169–174. DOI: 10.1016/j.mineng.2018.12.013.
  • Koopman, C.; Witkamp, G. J. Extraction of Lanthanides from the Phosphoric Acid Production Process to Gain Purified Gypsum and a Valuable Lanthanide by-Product. Hydrometallurgy 2000, 58, 51–60. DOI: 10.1016/S0304-386X(00)00127-4.
  • Góralczyk, S.; Uzunow, E. The Recovery of Yttrium and Europium Compounds from Waste Materials. Arch. Environ. Prot 2013, 39, 107–114. DOI: 10.2478/aep-2013-0023.
  • Borges, R. C.; Fávaro, D. I. T.; Caldas, V. G.; da Costa Lauria, D.; Bernedo, A. V. B. Instrumental Neutron Activation Analysis, Gamma Spectrometry and Geographic Information System Techniques in the Determination and Mapping of Rare Earth Element in Phosphogypsum Stacks. Environ. Earth Sci. 2016, 75, 1–15. DOI: 10.1007/s12665-016-5468-x.
  • Feldmann, T. Crystallization Kinetic Investigations of Calcium Sulfate Phases in Aqueous CaCl2-HCl Solutions. Ph.D. Dissertation, McGill University, Department of Mining and Materials, Canada, 2014. http://digitool.library.mcgill.ca/thesisfile121477.pdf.
  • Alhassanieh, O.; Mrad, O.; Ajji, Z. Sorption and Migration of Cs, Sr, and Eu in Gypsum Groundwater System. Nukleonika 2012, 57, 125–131.
  • Shivaramaiah, R.; Lee, W.; Navrotsky, A.; Yu, D.; Kim, P.; Wu, H.; Hu, Z.; Riman, R.; Anderko, A. Location and Stability of Europium in Calcium Sulfate and Its Relevance to Rare Earth Recovery from Phosphogypsum Waste. Am. Mineral 2016, 101, 1854–1861. DOI: 10.2138/am-2016-5684.
  • Schmidt, M.; Stumpf, T.; Walther, C.; Geckeis, H.; Fanghänel, T. Incorporation versus Adsorption: Substitution of Ca2+ by Eu3+ and Cm3+ in Aragonite and Gypsum. Dalton Trans. 2009, 33, 6645–6650. DOI: 10.1039/B822656C.
  • Bouhlassa, S.; Salhamen, F.; Elyahyaoui, A. Calcium Sulphate Hydrates Formation in Aqueous Sulpho-Phosphoric Media Containing Rare Earth Impurity beyond 80° C. Fluid. Phase Equilib 2016, 423, 93–100. DOI: 10.1016/j.fluid.2016.04.016.
  • Virolainen, S.; Repo, E.; Sainio, T. Recovering Rare Earth Elements from Phosphogypsum Using a Resin-in-Leach Process: Selection of Resin, Leaching Agent, and Eluent. Hydrometallurgy 2019, 189, 105125. DOI: 10.1016/j.hydromet.2019.105125.
  • Diwa, R. R.; Tabora, E. U.; Palattao, B. L.; Haneklaus, N. H.; Vargas, E. P.; Reyes, R. Y.; Ramirez, J. D. Evaluating Radiation Risks and Resource Opportunities Associated with Phosphogypsum in the Philippines. J. Radioanal. Nucl. Chem. 2022, 331, 967–974. DOI: 10.1007/s10967-021-08142-8.
  • Guan, Q.; Sui, Y.; Liu, C.; Wang, Y.; Zeng, C.; Yu, W.; Gao, Z.; Zang, Z.; Chi, R-a Characterization and Leaching Kinetics of Rare Earth Elements from Phosphogypsum in Hydrochloric Acid. Miner 2022, 12, 703. DOI: 10.3390/min12060703.
  • Christophe, N. N.; McCrindle, R.; Maree, J. Ngole-Jeme, V. The Behaviour of Selected Rare-Earth Elements during the Conversion of Phosphogypsum to Calcium Sulphide and Residue. J. Mater. Cycles. Waste Manage. 2023, 1–14.
  • Tokpayev, R.; Khavaza, T.; Ibraimov, Z.; Kishibayev, K.; Atchabarova, A.; Abdimomyn, S.; Abduakhytova, D.; Nauryzbayev, M. Phosphogypsum Conversion under Conditions of SC-CO2. J. CO2. Util. 2022, 63, 102120. DOI: 10.1016/j.jcou.2022.102120.
  • Mukaba, J. L.; Eze, C. P.; Pereao, O.; Petrik, L. F. Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques. Miner 2021, 11, 1051–1068. DOI: 10.3390/min11101051.
  • Korany, K. A.; Masoud, A. M.; Rushdy, O. E.; Alrowaili, Z. A.; Hassanein, F. H.; Taha, M. H. Phosphate, Phosphoric Acid and Phosphogypsum Natural Radioactivity and Radiological Hazards Parameters. J. Radioanal. Nucl. Chem. 2021, 329, 391–399. DOI: 10.1007/s10967-021-07796-8.
  • Bolívar, J. P.; Martín, J. E.; García-Tenorio, R.; Pérez-Moreno, J. P.; Mas, J. L. Behaviour and Fluxes of Natural Radionuclides in the Production Process of a Phosphoric Acid Plant. Appl. Radiat. Isot. 2009, 67, 345–356. DOI: 10.1016/j.apradiso.2008.10.012.
  • Thamer, B. J. Spectrophotometric and Solvent-Extraction Studies of Uranyl Phosphate Complexes1. J. Am. Chem. Soc. 1957, 79, 4298–4305. DOI: 10.1021/ja01573a016.
  • Singh, D. K.; Mondal, S.; Chakravartty, J. K. Recovery of Uranium from Phosphoric Acid: A Review. Solvent. Extr. Ion. Exch 2016, 34, 201–225. DOI: 10.1080/07366299.2016.1169142.
  • The OECD Nuclear Energy Agency (NEA) Aspects environnementaux de la production d‘uranium. Rapport établi conjointement par l’Agence de l’OCDE pour l’Energie Nucléaire et l’Agence Internationale de l’Energie Atomique, (Éditions de l’OCDE, France), 1999. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/767-aspects-environnementaux-uranium.pdf.
  • Baes, C. F. The Reduction of U(VI) by Iron Fe(II) in Phosphoric Acid Solution. J. Phys. Chem. 1956, 60, 805–806. DOI: 10.1021/j150540a028.
  • Bunuş, F.; Domocoş, V.; Bulaceanu, R.; Dumitrescu, P.; Popescu, G. Uranium Determination in Phosphoric Acid Solutions. J. Radioanal. Chem. 1976, 33, 251–262. DOI: 10.1007/BF02517729.
  • Cher, M.; Davidson, N. The Kinetics of the Oxygenation of Ferrous Iron in Phosphoric Acid Solution. J. Am. Chem. Soc. 1955, 77, 793–798. DOI: 10.1021/ja01608a086.
  • Vogel, C.; Hoffmann, M. C.; Taube, M. C.; Krüger, O.; Baran, R.; Adam, C. Uranium and Thorium Species in Phosphate Rock and Sewage Sludge Ash Based Phosphorus Fertilizers. J. Hazard. Mater. 2020, 382, 121100. DOI: 10.1016/j.jhazmat.2019.121100.
  • Botella, T.; Gasos, P. Recovery of Uranium from Phosphoric Acid: An Overview. In Proceedings on the Recovery of Uranium from Phosphoric Acid; IAEA, Vienna, 1989.
  • Azouazi, M.; Ouahidi, Y.; Fakhi, S.; Andres, Y.; Abbe, J. C.; Benmansour, M. Natural Radioactivity in Phosphates, Phosphogypsum and Natural Waters in Morocco. J. Environ. Radioact. 2001, 54, 231–242. DOI: 10.1016/S0265-931X(00)00153-3.
  • Metzger, R.; Mcklveen, J. W.; Jenkins, R.; McDowell, W. J. Specific Activity of Uranium and Thorium in Marketable Rock Phosphate as a Function of Particle Size. Health Phys. 1980, 39, 69–75. DOI: 10.1097/00004032-198007000-00008.
  • Szajerski, P. Distribution of Uranium and Thorium Chains Radionuclides in Different Fractions of Phosphogypsum Grains. Environ. Sci. Pollut. Res. Int. 2020, 27, 15856–15868. DOI: 10.1007/s11356-020-08090-y.
  • Olszewski, G.; Boryło, A.; Skwarzec, B. The Radiological Impact of Phosphogypsum Stockpile in Wiślinka (Northern Poland) on the Martwa Wisła River Water. J. Radioanal. Nucl. Chem. 2016, 307, 653–660. DOI: 10.1007/s10967-015-4191-5.
  • Arribas Jimeno, S.; Hernández Méndez, J.; Lucena Conde, F.; Burriel Marti, F. Qumica Analytica Cualitativa; Editorial Thomson, ISBN: 978-84-9732-140-2, 2002.
  • Al-Masri, M. S.; Al-Bich, F. Polonium-210 Distribution in Syrian Phosphogypsum. J. Radioanal. Nucl. Chem 2002, 251, 431–435. DOI: 10.1023/A:1014834209326.
  • Carvalho, F. P. Origins and Concentrations of 222Rn, 210Pb, 210Bi and 210Po in the Surface Air at Lisbon, Portugal, at the Atlantic Edge of the European Continental Landmass. Atmos. Environ 1995, 29, 1809–1819. DOI: 10.1016/1352-2310(95)00076-B.
  • Hurst, F. J.; Arnold, W. D. Uranium Control in Phosphogypsum. Proceedings of the International Symposium of Phosphogypsum FIPR Publication No. 01-001-017, Lake Buena Vista, Florida, 1980.
  • Hull, C. D.; Burnett, W. C. Radiochemistry of Florida Phosphogypsum. J. Environ. Radioact 1996, 32, 213–238. DOI: 10.1016/0265-931X(95)00061-E.
  • Roessler, C. E. Control of Radium in Phosphate Mining, Beneficiation and Chemical Processing. Environ. Behav. Radium 1990, 2, 270–279.
  • Van der Heijde, H. B.; Klijn, P. J.; Passchier, W. F. Radiological Impacts of the Disposal of Phosphogypsum. Radiat. Prot. Dosim 1988, 24, 419–423. DOI: 10.1093/oxfordjournals.rpd.a080316.
  • Lestini, L.; Beaucaire, C.; Vercouter, T.; Ballini, M.; Descostes, M. Role of Trace Elements in the 226-Radium Incorporation in Sulfate Minerals (Gypsum and Celestite). ACS Earth Space Chem. 2019, 3, 295–304. DOI: 10.1021/acsearthspacechem.8b00150.
  • El Afifi, E. M.; Khalil, M.; El-Aryan, Y. F. Leachability of Radium-226 from Industrial Phosphogypsum Waste Using Some Simulated Natural Environmental Solutions. Environ. Earth Sci. 2018, 77, 1–13. DOI: 10.1007/s12665-018-7277-x.
  • Akawwi, E. Radon-222 Concentrations in the Groundwater along Eastern Jordan Rift. J. of Applied Sciences 2014, 14, 309–316. DOI: 10.3923/jas.2014.309.316.
  • Haquin, G.; Yungrais, Z.; Ilzycer, D.; Zafrir, H.; Weisbrod, N. Detailed Effects of Particle Size and Surface Area on 222Rn Emanation of a Phosphate Rock. J. Environ. Radioact. 2017, 180, 77–81. DOI: 10.1016/j.jenvrad.2017.10.004.
  • Lysandrou, M.; Charalambides, A.; Pashalidis, I. Radon Emanation from Phosphogypsum and Related Mineral Samples in Cyprus. Radiat. Meas 2007, 42, 1583–1585. DOI: 10.1016/j.radmeas.2007.04.006.
  • Qamouche, K.; Chetaine, A.; Elyahyaoui, A.; Moussaif, A.; Touzani, R.; Benkdad, A.; Amsil, H.; Laraki, K.; Marah, H. Radiological Characterization of Phosphate Rocks, Phosphogypsum, Phosphoric Acid and Phosphate Fertilizers in Morocco: An Assessment of the Radiological Hazard Impact on the Environment. Mater. Today. Proc 2020, 27, 3234–3242. DOI: 10.1016/j.matpr.2020.04.703.
  • Belahbib, L.; Arhouni, F. E.; Boukhair, A.; Essadaoui, A.; Ouakkas, S.; Hakkar, M.; Abdo, M. A. S.; Benjelloun, M.; Bitar, A.; Nourreddine, A. Impact of Phosphate Industry on Natural Radioactivity in Sediment, Seawater, and Coastal Marine Fauna of El Jadida Province, Morocco. J. Hazard. Toxic. Radioact. Waste 2021, 25, 4020064. DOI: 10.1061/(ASCE)HZ.2153-5515.0000563.
  • Moalla, R.; Gargouri, M.; Khmiri, F.; Kamoun, L.; Zairi, M. Phosphogypsum Purification for Plaster Production: A Process Optimization Using Full Factorial Design. Environ. Eng. Res 2017, 23, 36–45. DOI: 10.4491/eer.2017.055.
  • El-Bahi, S. M.; Sroor, A.; Mohamed, G. Y.; El-Gendy, N. S. Radiological Impact of Natural Radioactivity in Egyptian Phosphate Rocks, Phosphogypsum and Phosphate Fertilizers. Appl. Radiat. Isot. 2017, 123, 121–127. DOI: 10.1016/j.apradiso.2017.02.031.
  • Papastefanou, C.; Stoulos, S.; Ioannidou, A.; Manolopoulou, M. The Application of Phosphogypsum in Agriculture and the Radiological Impact. J. Environ. Radioact. 2006, 89, 188–198. DOI: 10.1016/j.jenvrad.2006.05.005.
  • Liatsou, I.; Pashalidis, I. 2016 Radio-Environmental Impacts and Uranium Radiochemistry of Phosphogypsum Disposed at a Coastal Area in Cyprus. In Conference: 4th International Conference on Sustainable Solid Waste Management, Limassol, Cyprus.
  • Luca, A.; Margineanu, R.; Sahagia, M.; Wätjen, A. C. Activity Measurements of Technically Enhanced Naturally Occurring Radionuclides (TENORM) in Phosphogypsum. Appl. Radiat. Isot. 2009, 67, 961–963. DOI: 10.1016/j.apradiso.2009.01.065.
  • Burnett, W. C.; Schultz, M. K.; Hull, C. D. Radionuclide Flow during the Conversion of Phosphogypsum to Ammonium Sulfate. J. Environ. Radioact 1996, 32, 33–51. DOI: 10.1016/0265-931X(95)00078-O.
  • Msila, X.; Labuschagne, F.; Barnard, W.; Billing, D. G. Radioactive Nuclides in Phosphogypsum from the Lowveld Region of South Africa. S Afr. J. Sci. 2016, 112, 5. DOI: 10.17159/sajs.2016/20150102.
  • Moreira, R. H.; Queiroga, F. S.; Paiva, H. A.; Medina, N. H.; Fontana, G.; Guazzelli, M. A. Extraction of Natural Radionuclides in TENORM Waste Phosphogypsum. J. Environ. Chem. Eng 2018, 6, 6664–6668. DOI: 10.1016/j.jece.2018.10.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.