40
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spectroscopic constants and anharmonic force field of thiirane: a theoretical study

ORCID Icon, ORCID Icon, , &
Pages 218-226 | Received 17 May 2023, Accepted 03 Dec 2023, Published online: 19 Feb 2024

References

  • Margulès, L.; Ilyushin, V. V.; McGuire, B. A.; Belloche, A.; Motiyenko, R. A.; Remijan, A.; Alekseev, E. A.; Dorovskaya, O.; Guillemin, J. C. Submillimeter-Wave Spectroscopy of and Interstellar Search for Thioacetaldehyde. J. Mol. Spectrosc. 2020, 371, 111304. DOI: 10.1016/j.jms.2020.111304.
  • Sinclair, M. W.; Fourikis, N.; Ribes, J. C.; Robinson, B. J.; Brown, R. D.; Godfrey, P. D. Detection of Interstellar Thioformaldehyde. Aust. J. Phys. 1973, 26, 85–92. DOI: 10.1071/PH730085.
  • Kolesniková, L.; Tercero, B.; Cernicharo, J.; Alonso, J. L.; Daly, A. M.; Gordon, B. P.; Shipman, S. T. Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion. Ap J. 2014, 784, L7. DOI: 10.1088/2041-8205/784/1/L7.
  • Ilyushin, V.; Armieieva, I.; Dorovskaya, O.; Pogrebnyak, M.; Krapivin, I.; Alekseev, E.; Margules, L.; Motiyenko, R.; Kwabia Tchana, F.; Jabri, A.; et al. Microwave and FIR Spectroscopy of Dimethylsulfide in the Ground, First and Second Excited Torsional States. J. Mol. Struct. 2020, 1200, 127114. DOI: 10.1016/j.molstruc.2019.127114.
  • Cernicharo, J.; Cabezas, C.; Endo, Y.; Marcelino, N.; Agúndez, M.; Tercero, B.; Gallego, J. D.; de Vicente, P. Space and Laboratory Discovery of HC3S. +Astron. Astrophys. 2021, 646, L3. DOI: 10.1051/0004-6361/202040013.
  • Cernicharo, J.; Cabezas, C.; Agúndez, M.; Tercero, B.; Pardo, J. R.; Marcelino, N.; Gallego, J. D.; Tercero, F.; López-Pérez, J. A.; deVicente, P. TMC-1, the Starless Core Sulfur Factory: Discovery of NCS, HCCS, H2CCS, H2CCCS, and C4S and Detection of C5S. Astron. Astrophys. 2021, 648, L3. DOI: 10.1051/0004-6361/202140642.
  • Salta, Z.; Segovia, M. E.; Katz, A.; Tasinato, N.; Barone, V.; Ventura, O. N. Isomerization and Fragmentation Reactions on the [C2SH4] Potential Energy Surface: The Metastable Thione S-Methylide Isomer. J. Org. Chem. 2021, 86, 2941–2956. DOI: 10.1021/acs.joc.0c02835.
  • Martin-Drumel, M. A.; Lee, K. L. K.; Belloche, A.; Zingsheim, O.; Thorwirth, S.; Müller, H. S. P.; Lewen, F.; Garrod, R. T.; Menten, K. M.; McCarthy, M. C.; Schlemmer, S. Submillimeter Spectroscopy and Astronomical Searches of Vinyl Mercaptan, C2H3SH. A&A. 2019, 623, A167. DOI: 10.1051/0004-6361/201935032.
  • Turner, B. E.; Apponi, A. J. Microwave Detection of Interstellar Vinyl Alcohol, CH2=CHOH. Astrophys. J. 2001, 561, L207–L210. DOI: 10.1086/324762.
  • Cunningham, G. L.; Boyd, A. W.; Jr., Myers, R. J.; Gwinn, W. D.; Le Van, W. I. The Microwave Spectra, Structure, and Dipole Moments of Ethylene Oxide and Ethylene Sulfide. J. Chem. Phys. 1951, 19, 676–685. DOI: 10.1063/1.1748331.
  • Shoemaker, R. L.; Flygare, W. H. Sulfur-33 Nuclear Quadrupole Coupling and the Sulfur Localized Electron Distribution in Ethylene Sulfide. J. Am. Chem. Soc. 1968, 90, 6263–6266. DOI: 10.1021/ja01025a001.
  • Okiye, K.; Hirose, C.; Lister, D. G.; Sheridan, J. The Rs-Structure of Ethylene Sulphide. Chem. Phys. Lett. 1974, 24, 111–113. DOI: 10.1016/0009-2614(74)80228-9.
  • Hirose, C.; Okiye, K.; Maeda, S. The Microwave Spectrum of Thiirane in Excited Vibrational States. Bull. Chem. Soc. Jpn 1976, 49, 916–921. DOI: 10.1246/bcsj.49.916.
  • Gosavi, R. K.; Strausz, O. P. Ab Initio Molecular Orbital Studies on Thiirene and its Isomeric Structures. Can. J. Chem. 1983, 61, 2596–2610. DOI: 10.1139/v83-446.
  • Allen, W. D.; Bertie, J. E.; Falk, M. V.; Hess, B. A. Jr., Mast, G. B.; Othen, D. A.; Schaad, L. J.; Schaefer, III, H. F. The Experimental Vibrational Spectra, Vibrational Assignment, and Normal Coordinate Analysis of Thiirane-h4 and -d4 and Cis- and Trans-1,2-Dideuteriothiirane: Ab Initio Theoretical IR Spectra of Thiirane, Thiirene, and Isotopically Substituted Derivative. J. Chem. Phys. 1986, 84, 4211–4227. DOI: 10.1063/1.450043.
  • Alper, J. S.; Dothe, H.; Lowe, M. A. Scaled Quantum Mechanical Calculations of the Vibrational Structure of Thiirane, Thiirene, and Their Deuterated Isotopomers. Chem. Phys. 1988, 125, 77–87. DOI: 10.1016/0301-0104(88)85008-0.
  • Kirchner, B.; Huber, H.; Steinebrunner, G.; Dreizler, H.; Grabow, J. U.; Merke, I. Ab Initio Calculation of 33S Quadrupole Coupling Constants. Reanalysis of the 33S Hyperfine Structure in the Rotational Spectrum of Thiirane. Z. Naturforsch. 1997, 52, 297–305. DOI: 10.1515/zna-1997-0401.
  • Hirao, T.; Okabayashi, T.; Tanimoto, M. The r0 Structure of Ethylene Sulfide. J. Mol. Spectrosc. 2001, 208, 148–149. DOI: 10.1006/jmsp.2001.8362.
  • Batten, R. C.; Cole, G. C.; Legon, A. C. Rotational Spectroscopy of a Weak Complex of Thiirane and Ethyne: The Identification and Properties of a Highly Nonlinear S⋯H–C Hydrogen Bond. J. Chem. Phys. 2003, 119, 7903–7912. DOI: 10.1063/1.1607318.
  • Bane, M. K.; Thompson, C. D.; Appadoo, D. R. T.; McNaughton, D. Synchrotron Far Infrared Spectroscopy of the Ground, ν5, and ν15 States of Thiirane. J. Chem. Phys. 2012, 137, 084306. DOI: 10.1063/1.4747191.
  • Evans, C. J.; Carter, J. P.; Appadoo, D. R. T.; Wong, A.; McNaughton, D. Synchrotron Infrared Spectroscopy of the ν4, ν8, ν10, ν11 and ν14 Fundamental Bands of Thiirane. J. Mol. Spectrosc 2015, 316, 32–37. DOI: 10.1016/j.jms.2015.07.010.
  • Penocchio, E.; Mendolicchio, M.; Tasinato, N.; Barone, V. Structural Features of the Carbon–Sulfur Chemical Bond: A Semi-Experimental Perspective. Can. J. Chem. 2016, 94, 1065–1076. DOI: 10.1139/cjc-2016-0282.
  • Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle–Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT. 2019.
  • Dunning, T. H. Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. DOI: 10.1063/1.456153.
  • Dunning, T. H. Jr., Peterson, K. A.; Wilson, A. K. Gaussian Basis Sets for Use in Correlated Molecular Calculations. X. The Atoms Aluminum Through Argon Revisited. J. Chem. Phys. 2001, 114, 9244–9253. DOI: 10.1063/1.1367373.
  • Peterson, K. A.; Dunning, T. H. Jr Accurate Correlation Consistent Basis Sets for Molecular Core–Valence Correlation Effects: The Second-Row Atoms Al–Ar, and the First-Row Atoms B–Ne Revisited. J. Chem. Phys. 2002, 117, 10548–10560. DOI: 10.1063/1.1520138.
  • Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. DOI: 10.1021/acs.jcim.9b00725.
  • Stanton, J. F.; Gauss, J.; Harding, M. E.; et al. CFOUR (Coupled Cluster Techniques for Computational Chemistry), a Quantum-Chemical Program Package. For the current version, see http://www.cfour.de.
  • Pang, W. X.; Song, X. M.; Sun, Y. B.; Wang, M. S. Spectroscopic Constants and Anharmonic Force Field of Dithioformic Acid and its Isomers: A Theoretical Study. J. Mol. Model. 2022, 28, 173. DOI: 10.1007/s00894-022-05166-z.
  • Song, X. M.; Wang, M. S.; Yang, C. L.; Pang, W. X.; Ma, X. G.; Li, Y. J. The Molecular Structure, Spectroscopic Properties and Partition Functions of C3H2S Isomers: An Ab Initio Study. Comput. Theor. Chem. 2022, 1217, 113877. DOI: 10.1016/j.comptc.2022.113877.
  • Barone, V. The Virtual Multifrequency Spectrometer: A New Paradigm for Spectroscopy. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 86–110. DOI: 10.1002/wcms.1238.
  • Barone, V.; Baiardi, A.; Biczysko, M.; Bloino, J.; Cappelli, C.; Lipparini, F. Implementation and Validation of a Multi-Purpose Virtual Spectrometer for Large Systems in Complex Environments. Phys. Chem. Chem. Phys. 2012, 14, 12404–12422. DOI: 10.1039/c2cp41006k.
  • Biczysko, M.; Bloino, J.; Puzzarini, C. Computational Challenges in Astrochemistry. WIREs Comput. Mol. Sci. 2017, 8, e1349. DOI: 10.1002/wcms.1349.
  • Medcraft, C.; Thompson, C. D.; Robertson, E. G.; Appadoo, D. R. T.; McNaughton, D. The Far-Infrared Rotational Spectrum of Ethylene Oxide. Ap J. 2012, 753, 18. DOI: 10.1088/0004-637X/753/1/18.
  • Song, X. M.; Wang, M. S.; Yang, C. L.; Liu, Y. J.; Ma, S. S.; Ma, X. G.; Pang, W. X. The Molecular Structure and Spectroscopic Properties of C3H2O and its Isomers: An Ab Initio Study. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 265, 120388. DOI: 10.1016/j.saa.2021.120388.
  • Clabo, D. A. Jr., Allen, W. D.; Remington, R. B.; Yamaguchi, Y.; Schaefer, III, H. F. A Systematic Study of Molecular Vibrational Anharmonicity and Vibration–Rotation Interaction by Self-Consistent-Field Higher-Derivative Methods. Asymmetric Top Molecules. Chem. Phys. 1988, 123, 187–239. DOI: 10.1016/0301-0104(88)87271-9.
  • Barone, V.; Biczysko, M.; Bloino, J.; Puzzarini, C. Accurate Molecular Structures and Infrared Spectra of Trans-2,3-Dideuterooxirane, Methyloxirane, and Trans-2,3-Dimethyloxirane. J. Chem. Phys. 2014, 141, 034107. DOI: 10.1063/1.4887357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.