141
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Design, synthesis and antibacterial evaluation of N-substituted indole derivatives containing 1,3,4-thiadiazole and amide moieties

, , , , , ORCID Icon & ORCID Icon show all
Pages 193-200 | Received 20 Nov 2023, Accepted 08 Feb 2024, Published online: 23 Feb 2024

References

  • Liu, D.; Zhang, J.; Zhao, L.; He, W.; Liu, Z.; Gan, X.; Song, B. First Discovery of Novel Pyrido[1,2-a]Pyrimidinone Mesoionic Compounds as Antibacterial Agents. J. Agric. Food Chem. 2019, 67, 11860–11866. DOI: 10.1021/acs.jafc.9b03606.
  • Li, D.; Wang, L.; Teng, S.; Zhang, G.; Guo, L.; Mao, Q.; Wang, W.; Li, M.; Chen, L. Proteomics Analysis of Rice Proteins up-Regulated in Response to Bacterial Leaf Streak Disease. J. Plant Biol. 2012, 55, 316–324. DOI: 10.1007/s12374-011-0346-2.
  • Sundaram, R. M.; Chatterjee, S.; Oliva, R.; Laha, G. S.; Cruz, C. V.; Leach, J. E.; Sonti, R. V. Update on Bacterial Blight of Rice: Fourth International Conference on Bacterial Blight. Rice (N Y) 2014, 7, 12. DOI: 10.1186/s12284-014-0012-7.
  • Jiang, N.; Yan, J.; Liang, Y.; Shi, Y.; He, Z.; Wu, Y.; Zeng, Q.; Liu, X.; Peng, J. Resistance Genes and Their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.) – an Updated Review. Rice (N Y). 2020, 13, 3. DOI: 10.1186/s12284-019-0358-y.
  • Li, P.; Tian, P.; Chen, Y.; Song, X.; Xue, W.; Jin, L.; Hu, D.; Yang, S.; Song, B. Novel Bisthioether Derivatives Containing a 1,3,4-Oxadiazole Moiety: Design, Synthesis, Antibacterial and Nematocidal Activities. Pest Manag. Sci. 2018, 74, 844–852. DOI: 10.1002/ps.4762.
  • Serizawa, S.; Ichikawa, T.; Takikawa, Y.; Tsuyumu, S.; Goto, M. Occurrence of Bacterial Canker of Kiwifruit in Japan Description of Symptoms, Isolation of the Pathogen and Screening of Bactericides. Jpn. J. Phytopathol. 1989, 55, 427–436. DOI: 10.3186/jjphytopath.55.427.
  • Yang, J.; Guan, A.; Li, Z.; Zhang, P.; Liu, C. Design, Synthesis, and Structure – Activity Relationship of Novel Spiropyrimidinamines as Fungicides against Pseudoperonospora cubensis. J. Agric. Food Chem. 2020, 68, 6485–6492. DOI: 10.1021/acs.jafc.9b07055.
  • Wu, H.-B.; Wu, H.-B.; Kuang, M.-S.; Lan, H.-P.; Wen, Y.-X.; Liu, T.-T. Novel Bithiophene Dimers from Echinops Latifolius as Potential Antifungal and Nematicidal Agents. J. Agric. Food Chem. 2020, 68, 11939–11945. DOI: 10.1021/acs.jafc.0c00169.
  • Alves, F. R. d. S.; Barreiro, E. J.; Fraga, C. A. M. From Nature to Drug Discovery: The Indole Scaffold as a ‘Privileged Structure. Mini Rev. Med. Chem. 2009, 9, 782–793. DOI: 10.2174/138955709788452649.
  • Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489–4497. DOI: 10.1021/cr900211p.
  • Sravanthi, T. V.; Manju, S. L. Indoles - A Promising Scaffold for Drug Development. Eur. J. Pharm. Sci. 2016, 91, 1–10. DOI: 10.1016/j.ejps.2016.05.025.
  • Zhang, M.-Z.; Chen, Q.; Yang, G.-F. A Review on Recent Developments of Indole-Containing Antiviral Agents. Eur. J. Med. Chem. 2015, 89, 421–441. DOI: 10.1016/j.ejmech.2014.10.065.
  • Wei, C.; Zhang, J.; Shi, J.; Gan, X.; Hu, D.; Song, B. Synthesis, Antiviral Activity, and Induction of Plant Resistance of Indole Analogues Bearing Dithioacetal Moiety. J. Agric. Food Chem. 2019, 67, 13882–13891. DOI: 10.1021/acs.jafc.9b05357.
  • Ashok, P.; Chander, S.; Smith, T. K.; Prakash Singh, R.; Jha, P. N.; Sankaranarayanan, M. Biological Evaluation and Structure Activity Relationship of 9-Methyl-1-Phenyl-9H-Pyrido[3,4-b]Indole Derivatives as anti-Leishmanial Agents. Bioorg. Chem. 2019, 84, 98–105. DOI: 10.1016/j.bioorg.2018.11.037.
  • Huang, E.; Zhang, L.; Xiao, C.; Meng, G.; Zhang, B.; Hu, J.; Wan, D. C.-C.; Meng, Q.; Jin, Z.; Hu, C. Synthesis and Biological Evaluation of Indole-3-Carboxamide Derivatives as Antioxidant Agents. Chin. Chem. Lett. 2019, 30, 2157–2159. DOI: 10.1016/j.cclet.2019.04.044.
  • Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A Privileged Scaffold for the Design of anti-Cancer Agents. Eur. J. Med. Chem. 2019, 183, 111691. DOI: 10.1016/j.ejmech.2019.111691.
  • Abdelhamid, A. O.; Gomha, S. M.; Abdelriheem, N. A.; Kandeel, S. M. Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents. Molecules. 2016, 21, 929. DOI: 10.3390/molecules21070929.
  • Ibrahim, M. S.; Farag, B.; Al-Humaidi, J. Y.; Zaki, M. E. A.; Fathalla, M.; Gomha, S. M. Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents. Molecules. 2023, 28, 3869. DOI: 10.3390/molecules28093869.
  • Essa, F. B.; Bazbouz, A.; Alhilalb, S.; Ouf, S. A.; Gomha, S. M. Synthesis and Biological Evaluation of an Indole Core-Based Derivative with Potent Antimicrobial Activity. Res. Chem. Intermed. 2018, 44, 5345–5356. DOI: 10.1007/s11164-018-3426-9.
  • Alhilal, S.; Alhilal, M.; Gomha, S. M.; Ouf, S. A. Synthesis and Biological Evaluation of New Aza-Acyclic Nucleosides and Their Hydrogen Complexes from Indole. Res. Chem. Intermed. 2022, 48, 3567–3587. DOI: 10.1007/s11164-022-04760-3.
  • Chauhan, M.; Saxena, A.; Saha, B. An Insight in anti-Malarial Potential of Indole Scaffold: A Review. Eur. J. Med. Chem. 2021, 218, 113400. DOI: 10.1016/j.ejmech.2021.113400.
  • Mowery, P.; Filkorn, M. M.; Hurysz, B.; Kwansare, D. O.; Lafferty, M. M.; McFadden, M. A.; Neerukonda, N. D.; Patel, R. R.; Pierce, K.; Sockett, K. A.; et al. Discovery of an Indole-Substituted Furanone with Tubulin Polymerization Inhibition Activity. Bioorg. Med. Chem. Lett. 2021, 41, 127991. DOI: 10.1016/j.bmcl.2021.127991.
  • Meng, Q.; Ren, X.; Wang, R.; Han, Y.; Li, X.; Zhang, Q.; Li, Z.; Wang, Y.; Huang, L.; Yu, H. Design, Synthesis, Anticonvulsant Activity and Structure-Activity Relationships of Novel 7-Azaindole Derivatives. Bioorg. Chem. 2023, 133, 106430. DOI: 10.1016/j.bioorg.2023.106430.
  • Vijayakumar, B. G.; Ramesh, D.; Joji, A.; Jayachandra Prakasan, J.; Kannan, T. In Silico Pharmacokinetic and Molecular Docking Studies of Natural Flavonoids and Synthetic Indole Chalcones against Essential Proteins of SARS-CoV-2. Eur. J. Pharmacol. 2020, 886, 173448. DOI: 10.1016/j.ejphar.2020.173448.
  • Liu, T.; Yao, X.; Zhang, R.; Wu, T.; Liu, Z.; Li, D.; Dong, Q. Design, Synthesis and Biological Evaluation of Novel Indole-Piperazine Derivatives as Antibacterial Agents. Bioorg. Med. Chem. Lett. 2023, 89, 129320. DOI: 10.1016/j.bmcl.2023.129320.
  • Mane, Y. D.; Sarnikar, Y. P.; Surwase, S. M.; Biradar, D. O.; Gorepatil, P. B.; Shinde, V. S.; Khade, B. C. Design, Synthesis, and Antimicrobial Activity of Novel 5-Substituted Indole-2-Carboxamide Derivatives. Res. Chem. Intermed. 2016, 43, 1253–1275. DOI: 10.1007/s11164-016-2696-3.
  • Jagadeesan, S.; Karpagam, S. Novel Series of N-Acyl Substituted Indole Based Piperazine, Thiazole and Tetrazoles as Potential Antibacterial, Antifungal, Antioxidant and Cytotoxic Agents, and Their Docking Investigation as Potential Mcl-1 Inhibitors. J. Mol. Struct. 2023, 1271, 134013. DOI: 10.1016/j.molstruc.2022.134013.
  • Hu, Y.; Zhou, H.; Huang, J.; Pan, G.; Wang, H.; Wang, T.; Yu, C.; Zhang, L.; Gou, D.; Zhang, J. 2-Hydroxypropyl Group Linked Derivatives of Indole Azoles as Potential Multifunctional Antibacterial Candidates for Effectively Inhibiting the Activity of MRSA and Responding Inflammatory Factors. Chem. Asian J. 2023, 18, e202300054. DOI: 10.1002/asia.202300054.
  • Jain, A. K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R. K. 1,3,4-Thiadiazole and Its Derivatives: A Review on Recent Progress in Biological Activities. Chem. Biol. Drug Des. 2013, 81, 557–576. DOI: 10.1111/cbdd.12125.
  • Li, Y.; Geng, J.; Liu, Y.; Yu, S.; Zhao, G. Thiadiazole – a Promising Structure in Medicinal Chemistry. ChemMedChem 2013, 8, 27–41. DOI: 10.1002/cmdc.201200355.
  • Hu, Y.; Li, C.-Y.; Wang, X.-M.; Yang, Y.-H.; Zhu, H.-L. 1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal, Agricultural, and Materials Chemistry. Chem. Rev. 2014, 114, 5572–5610. DOI: 10.1021/cr400131u.
  • Han, X.; Yu, L. Y.; Hu, S. Y.; Liu, H. X. 1,3,4-thiadiazole: A Privileged Scaffold for Drug Design and Development. Curr. Top. Med. Chem. 2021, 21, 2546–2573. DOI: 10.2174/1568026621666211111154342.
  • Zhu, D.; Chen, M.; Li, M.; Luo, B.; Zhao, Y.; Huang, P.; Xue, F.; Rapposelli, S.; Pi, R.; Wen, S. Discovery of Novel N-Substituted Carbazoles as Neuroprotective Agents with Potent anti-Oxidative Activity. Eur. J. Med. Chem. 2013, 68, 81–88. DOI: 10.1016/j.ejmech.2013.07.029.
  • Gomha, S. M.; Abdelhamid, A. O.; Kandil, O. M.; Kandeel, S.; M.; Abdelrehem, N. A. Synthesis and Molecular Docking of Some Novel Thiazoles and Thiadiazoles Incorporating Pyranochromene Moiety as Potent Anticancer Agents. Mini Rev. Med. Chem. 2018, 18, 1670–1682. DOI: 10.2174/1389557518666180424113819.
  • Gomha, S. M.; Muhammad, Z. A.; El-Reedy, A. A. M. Intramolecular Ring Transformation of Bis-Oxadiazoles to Bis-Thiadiazoles and Investigation of Their Anticancer Activities. Journal of Heterocyclic Chem. 2018, 55, 2360–2367. DOI: 10.1002/jhet.3300.
  • Abouzied, A. S.; Al-Humaidi, J. Y.; Bazaid, A. S.; Qanash, H.; Binsaleh, N. K.; Alamri, A.; Ibrahim, S. M.; Gomha, S. M. Synthesis, Molecular Docking Study, and Cytotoxicity Evaluation of Some Novel 1,3,4-Thiadiazole as Well as 1,3-Thiazole Derivatives Bearing a Pyridine Moiety. Molecules. 2022, 27, 6368. DOI: 10.3390/molecules27196368.
  • Aljohani, G. F.; Abolibda, T. Z.; Alhilal, M.; Al-Humaidi, J. Y.; Alhilal, S.; Ahmed, H. A.; Gomha, S. M. Novel Thiadiazole-Thiazole Hybrids: Synthesis, Molecular Docking, and Cytotoxicity Evaluation against Liver Cancer Cell Lines. J. Taibah Univ. Sci. 2022, 16, 1005–1015. DOI: 10.1080/16583655.2022.2135805.
  • Ruan, X.; Zhang, C.; Jiang, S.; Guo, T.; Xia, R.; Chen, Y.; Tang, X.; Xue, W. Design, Synthesis, and Biological Activity of Novel Myricetin Derivatives Containing Amide, Thioether, and 1,3,4-Thiadiazole Moieties. Molecules. 2018, 23, 3132. DOI: 10.3390/molecules23123132.
  • Said, M. A.; Riyadh, S. M.; Al-Kaff, N. S.; Nayl, A. A.; Khalil, K. D.; Bräse, S.; Gomha, S. M. Synthesis and Greener Pastures Biological Study of Bis-Thiadiazoles as Potential Covid-19 Drug Candidates. Arab. J. Chem. 2022, 15, 104101. DOI: 10.1016/j.arabjc.2022.104101.
  • Chen, Y.; Cao, N.; Lv, H.; Zeng, K.; Yuan, J.; Guo, X.; Zhao, M.; Tu, P.; Jiang, Y. Anti-Inflammatory and Cytotoxic Carbazole Alkaloids from Murraya Kwangsiensis. Phytochemistry. 2020, 170, 112186. DOI: 10.1016/j.phytochem.2019.112186.
  • Wu, Z.; Shi, J.; Chen, J.; Hu, D.; Song, B. Design, Synthesis, Antibacterial Activity, and Mechanisms of Novel 1,3,4-Thiadiazole Derivatives Containing an Amide Moiety. J. Agric. Food Chem. 2021, 69, 8660–8670. DOI: 10.1021/acs.jafc.1c01626.
  • Tang, C.; Chen, X.; Yang, S.; Guo, W.; Yang, X.; Li, P.; Wang, X. Discovery of Novel Carbazole Derivatives Containing a 1,3,4-Thiadiazole Moiety as Antifungal Candidates. Phosphorus, Sulfur Silicon Relat. Elem. 2023, 198, 627–631. DOI: 10.1080/10426507.2023.2191961.
  • Men, Y.; Li, Z.; Wang, H.; Liu, Y.; Liu, X.; Chen, B. Synthesis and Antiproliferative Evaluation of Novel 1,3,4-thiadiazole-S-Alkyl Derivatives Based on Quinazolinone. Phosphorus, Sulfur Silicon Relat. Elem. 2023, 198, 591–601. DOI: 10.1080/10426507.2023.2176500.
  • Tang, C.; Wang, W.; Luo, G.; Song, C.; Bao, Z.; Li, P.; Hao, G.; Chi, Y. R.; Jin, Z. Carbene-Catalyzed Activation of C-Si Bonds for Chemo- and Enantioselective Cross Brook-Benzoin Reaction. Angew. Chem. Int. Ed. Engl. 2022, 61, e202206961. DOI: 10.1002/anie.202206961.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.