115
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and anticancer evaluation of new disulfides incorporating naphthalimide moiety

, , , , , & ORCID Icon show all
Pages 245-256 | Received 21 Sep 2023, Accepted 18 Feb 2024, Published online: 08 Mar 2024

References

  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2020. CA. Cancer J. Clin. 2020, 70, 7–30. DOI: 10.3322/caac.21590.
  • Seenaiah, D.; Rekha, T.; Padmaja, A.; Padmavathi, V. Synthesis and Antimicrobial Activity of Pyrimidinyl Bis(Benzazoles). Med. Chem. Res. 2017, 26, 431–441. DOI: 10.1007/s00044-016-1758-9.
  • Chavan, A. P.; Deshpande, R. R.; Borade, N. A.; Shinde, A.; Mhaske, P. C.; Sarkar, D.; Bobade, V. D. Synthesis of New 1,3,4-Oxadiazole and Benzothiazolylthioether Derivatives of 4-Arylmethylidene-3-Substituted-Isoxazol-5(4H)-One as Potential Antimycobacterial Agents. Med. Chem. Res. 2019, 28, 1873–1884. DOI: 10.1007/s00044-019-02420-7.
  • Mor, S.; Khatri, M.; Punia, R.; Jakhar, K. Synthesis and in Vitro Antimicrobial Evaluation of Benzothiazolylindenopyrazoles. Med. Chem. Res. 2023, 32, 47–56. DOI: 10.1007/s00044-022-02988-7.
  • Albayrak, F.; Çiçek, M.; Alkaya, D.; Kulu, I. Design, Synthesis and Biological Evaluation of 8-Aminoquinoline-1,2,3-Triazole Hybrid Derivatives as Potential Antimicrobial Agents. Med. Chem. Res. 2022, 31, 652–665. DOI: 10.1007/s00044-022-02866-2.
  • Subhashini, N. J. P.; Chinthala, S.; Raj, S. Design, Synthesis, Characterization, and Antimicrobial Evaluation of Novel 2-(3,5-Dimethoxy-4-((1-Aryl-1H-1,2,3-Triazole-4- yl)Methoxy)Phenyl) Benzo[d]Thiazoles. J. Heterocycl. Chem. 2018, 55, 251–257. DOI: 10.1002/jhet.3033.
  • Miniyar, P. B.; Mahajan, A. A.; Mokale, S. N.; Shah, M. U.; Kumar, A. S.; Chaturbhuj, G. U. Triazole Hybrids as New Type of anti-Fungal Agents. Arab. J. Chem 2017, 10, 295–299. DOI: 10.1016/j.arabjc.2013.09.005.
  • Abed, N. A.; Hammouda, M. M.; Ismail, M. A.; Abdel-Latif, E. Synthesis of New Heterocycles Festooned with Thiophene and Evaluating Their Antioxidant Activity. J. Heterocycl. Chem. 2020, 57, 4153–4163. DOI: 10.1002/jhet.4122.
  • Kumar, Akhilesh, Sharma, Deepansh, Sharma, Pawan K., Ram, Sita, Chander, Monika,. Novel Benzenesulfonamide Bearing 1,2,4-Triazoles as Potent anti-Microbial and anti-Oxidant Agents. Med Chem Res. 2023, 32, 542–555. DOI: 10.1007/s00044-023-03024-y.
  • Iyer, V. B.; Gurupadayya, B.; Koganti, V. S.; Inturi, B.; Chandan, R. S. Design, Synthesis and Biological Evaluation of 1,3,4-Oxadiazoles as Promising anti-Inflammatory Agents. Med. Chem. Res. 2016, 26, 190–204. DOI: 10.1007/s00044-016-1740-6.
  • Akhter, M. W.; Hassan, M. Z.; Amir, M. Synthesis and Pharmacological Evaluation of 3-Diphenylmethyl-6-Substituted-1,2,4-Triazolo[3,4-b]-1,3,4-Thiadiazoles: A Condensed Bridgehead Nitrogen Heterocyclic System. Arab. J. Chem. 2014, 7, 955–963. DOI: 10.1016/j.arabjc.2014.05.036.
  • Rostom, S. A. F.; Badr, M. H.; Abd, E. l.; Razik, H. A.; Ashour, H. M. A. Structure-Based Development of Novel Triazoles and Related Thiazolotriazoles as Anticancer Agents and Cdc25A/B Phosphatase Inhibitors. Synthesis, in Vitro Biological Evaluation, Molecular Docking and in Silico ADME-T Studies. Eur. J. Med. Chem. 2017, 139, 263–279. DOI: 10.1016/j.ejmech.2017.07.053.
  • Ananth, A. H.; Manikandan, N.; Rajan, R. K.; Elancheran, R.; Lakshmithendral, K.; Ramanathan, M.; Bhattacharjee, A.; Kabilan, S. Design, Synthesis, and Biological Evaluation of 2-(2-Bromo-3-Nitrophenyl)-5-Phenyl-1,3,4-Oxadiazole Derivatives as Possible anti-Breast Cancer Agents. Chem. Biodivers. 2020, 17, e1900659. DOI: 10.1002/cbdv.201900659.
  • Sirgamalla, R.; Adem, K.; Boda, S.; Kommakula, A.; Neradi, S.; Perka, S.; Bojja, K.; Arifuddin, M. DABCO Mediated One Pot Synthesis of 2-(3-Benzyl-2,6-Dioxo-3,6-Dihydro Pyrimidin-1[2H]-yl)-N-(4-(1,3-Dioxo-1H-Benzo[de]Isoquinolin-2[3H]-yl)Aryl) Acetamides as Antimicrobial Agents. J. Heterocyclic Chem. 2020, 57, 3375–3383. DOI: 10.1002/jhet.4055.
  • Johansen, Matt D, Kremer, Laurent, Kumar, Vipan, Shalini , Design, Synthesis, anti-Mycobacterial and Cytotoxic Evaluation of C-4 Functionalized 1,8-Naphthalimide-Heterocyclic Hydrazide Conjugates. Chem. Biol. Drug Des. 2019, 94, 1300–1305. DOI: 10.1111/cbdd.13503.
  • Chang, S.-C.; Archer, B. J.; Utecht, R. E.; Lewis, D. E.; Judy, M. M.; Matthews, J. L. 4-Alkylamino-3-bromo-N-Alkyl-1,8-Naphthalimides: New Photochemically Activatable Antiviral Compounds. Bioorg. Med. Chem. Lett. 1993, 3, 555–556. DOI: 10.1016/S0960-894X(01)81227-0.
  • Shao, J.; Li, Y. Q.; Wang, Z. Y.; Xiao, M. M.; Yin, P. H.; Lu, Y. H.; Qian, X. H.; Xu, Y. F.; Liu, J. W. 7b, a Novel Naphthalimide Derivative, Exhibited anti-Inflammatory Effects via Targeted-Inhibiting TAK1 following down-Regulation of ERK1/2- and p38 MAPK-Mediated Activation of NF-κB in LPS-Stimulated RAW264.7 Macrophages. Int. Immunopharmacol. 2013, 17, 216–228. DOI: 10.1016/j.intimp.2013.06.008.
  • Arya, S.; Kumar, S.; Rani, R.; Kumar, N.; Roy, P.; Sondhi, S. M. Synthesis, anti-Inflammatory, and Cytotoxicity Evaluation of 9,10-Dihydroanthracene-9,10-α,β- Succinimide and Bis-Succinimide Derivatives. Med. Chem. Res. 2013, 22, 4278–4285. DOI: 10.1007/s00044-012-0439-6.
  • Brider, T.; Redko, B.; Oron-Herman, M.; Cohen-Matzlich, A.; Gerlitz, G.; Gellerman, G.; Grynszpan, F. Synthesis and in Vitro Anticancer Evaluation of 1,8-Naphthalimide N(4) and S(4)-Derivatives Combining DNA Intercalation and Alkylation Capabilities. Res. Chem. Intermed. 2016, 42, 1741–1757. DOI: 10.1007/s11164-015-2115-1.
  • Liang, G. B.; Wei, J. H.; Jiang, H.; Huang, R. Z.; Qin, J. T.; Wang, H. L.; Wang, H. S.; Zhang, Y. Design, Synthesis and Antitumor Evaluation of New 1,8-Naphthalimide Derivatives Targeting Nuclear DNA. Eur. J. Med. Chem. 2021, 210, 112951. DOI: 10.1016/j.ejmech.2020.112951.
  • Xin, M.; Wei, J. H.; Yang, C. H.; Liang, G. B.; Su, D.; Ma, X. L.; Zhang, Y. Design, Synthesis and Biological Evaluation of 3-Nitro-1,8-Naphthalimides as Potential Antitumor Agents. Bioorg. Med. Chem. Lett. 2020, 30, 127051. DOI: 10.1016/j.bmcl.2020.127051.
  • Yildiz, U.; Kandemir, I.; Cömert, F.; Akkoç, S.; Coban, B. Synthesis of Naphthalimide Derivatives with Potential Anticancer Activity, Their Comparative ds- and G-Quadruplex‑DNA Binding Studies and Related Biological Activities. Mol. Biol. Rep. 2020, 47, 1563–1572. DOI: 10.1007/s11033-019-05239-y.
  • Shinkai, H.; Maeda, K.; Yamasaki, T.; Okamoto, H.; Uchida, I. Bis(2-(Acylamino)Phenyl) Disulfides, 2-(Acylamino)Benzenethiols, and S-(2-(Acylamino)Phenyl) Alkanethioates as Novel Inhibitors of Cholesteryl Ester Transfer Protein. J. Med. Chem. 2000, 43, 3566–3572. DOI: 10.1021/jm000224s.
  • Branowska, D.; Ławecka, J.; Sobiczewski, M.; Karczmarzyk, Z.; Wysocki, W.; Wolińska, E.; Olender, E.; Mirosław, B.; Perzyna, A.; Bielawska, A.; Bielawski, K. Synthesis of Unsymmetrical Disulfanes Bearing 1,2,4-Triazine Scaffold and Their in Vitro Screening towards anti-Breast Cancer Activity. Monatsh. Chem. 2018, 149, 1409–1420. DOI: 10.1007/s00706-018-2206-y.
  • Nakazawa, T.; Xu, J. Z.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R. E. P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. Lissoclibadins 4 − 7, Polysulfur Aromatic Alkaloids from the Indonesian Ascidian Lissoclinum cf. badium. J. Nat. Prod. 2007, 70, 439–442. DOI: 10.1021/np060593c.
  • Mukherjee, N.; Chatterjee, T. Iodine-Catalyzed, Highly Atom-Economic Synthesis of 9-Sulfenylphenanthrenes and Polycyclic Heteroaromatics in Water. Green Chem. 2021, 23, 10006–10013. DOI: 10.1039/D1GC03305K.
  • Mukherjee, N.; Chatterjee, T. Recyclable Iodine-Catalyzed Oxidative C–H Chalcogenation of 1,1-Diarylethenes in Water: Green Synthesis of Trisubstituted Vinyl Sulfides and Selenides. Green Chem. 2023, 25, 8798–8807. DOI: 10.1039/D3GC02999A.
  • Sheppard, J. G.; Frazier, K. R.; Saralkar, P.; Hossain, M. F.; Geldenhuys, W. J.; Long, T. E. Disulfiram-Based Disulfides as Narrow-Spectrum Antibacterial Agents. Bioorg. Med. Chem. Lett. 2018, 28, 1298–1302. DOI: 10.1016/j.bmcl.2018.03.023.
  • Turos, E.; Revell, K. D.; Ramaraju, P.; Gergeres, D. A.; Greenhalgh, K.; Young, A.; Sathyanarayan, N.; Dickey, S.; Lim, D.; Alhamadsheh, M. M.; Reynolds, K. Unsymmetric Aryl-Alkyl Disulfide Growth Inhibitors of Methicillin-Resistant Staphylococcus Aureus and Bacillus Anthracis. Bioorg. Med. Chem. 2008, 16, 6501–6508. DOI: 10.1016/j.bmc.2008.05.032.
  • Capperucci, A.; Coronnello, M.; Salvini, F.; Tanini, D.; Dei, S.; Teodori, E.; Giovannelli, L. Synthesis of Functionalised Organochalcogenides and In Vitro Evaluation of Their Antioxidant Activity. Bioorg. Chem. 2021, 110, 104812. DOI: 10.1016/j.bioorg.2021.104812.
  • Osipova, V.; Polovinkina, M.; Gracheva, Y.; Shpakovsky, D.; Osipova, A.; Berberova, N. Antioxidant Activity of Some Organosulfur Compounds in Vitro. Arab. J. Chem 2021, 14, 103068. DOI: 10.1016/j.arabjc.2021.103068.
  • Lee, T. H.; Khan, Z.; Subedi, L.; Kim, S. Y.; Lee, K. R. New Bis-Thioglycosyl-1,1′-Disulfides from Nasturtium Officinale R. Br. and Their anti-Neuroinflammatory Effect. Bioorg. Chem. 2019, 86, 501–506. DOI: 10.1016/j.bioorg.2019.01.062.
  • Jadhav, K. B.; Stein, C.; Makarewicz, O.; Pradel, G.; Lichtenecker, R. J.; Sack, H.; Heinemann, S. H.; Arndt, H. D. Bioactivity of Topologically Confined Gramicidin a Dimmers. Bioorg. Med. Chem. 2017, 25, 261–268. DOI: 10.1016/j.bmc.2016.10.033.
  • Roldán-Peña, J. M.; Alejandre-Ramos, D.; López, Ó.; Maya, I.; Lagunes, I.; Padrón, J. M.; Peña-Altamira, L. E.; Bartolini, M.; Monti, B.; Bolognesi, M. L.; Fernández-Bolaños, J. G. New Tacrine Dimers with Antioxidant Linkers as Dual Drugs: Anti-Alzheimer’s and Antiproliferative Agents. Eur. J. Med. Chem. 2017, 138, 761–773. DOI: 10.1016/j.ejmech.2017.06.048.
  • Olivito, F.; Amodio, N.; Di Gioia, M. L.; Nardi, M.; Oliverio, M.; Juli, G.; Tassone, P.; Procopio, A. Synthesis and Preliminary Evaluation of the anti-Cancer Activity on A549 Lung Cancer Cells of a Series of Unsaturated Disulfides. Medchemcomm. 2019, 10, 116–119. DOI: 10.1039/C8MD00503F.
  • Wei, X. X.; Zhong, M.; Wang, S.; Li, L. X.; Song, Z. L.; Zhang, J. M.; Xu, J. Q.; Fang, J. G. Synthesis and Biological Evaluation of Disulfides as Anticancer Agents with Thioredoxin Inhibition. Bioorg. Chem. 2021, 110, 104814. DOI: 10.1016/j.bioorg.2021.104814.
  • Diraimondo, T. R.; Plugis, N. M.; Jin, X.; Khosla, C. Selective Inhibition of Extracellular Thioredoxin by Asymmetric Disulfides. J. Med. Chem. 2013, 56, 1301–1310. DOI: 10.1021/jm301775s.
  • Zhu, S. J.; Ying, H. Z.; Wu, Y.; Qiu, N.; Liu, T.; Yang, B.; Dong, X. W.; Hu, W. Z. Design, Synthesis and Biological Evaluation of Novel Podophyllotoxin Derivatives Bearing 4β-Disulfide/Trisulfide Bond as Cytotoxic Agents. RSC Adv. 2015, 5, 103172–103183. DOI: 10.1039/C5RA12837D.
  • Baker, A. F.; Adab, K. N.; Raghunand, N.; Chow, H. H. S.; Stratton, S. P.; Squire, S. W.; Boice, M.; Pestano, L. A.; Kirkpatrick, D. L.; Dragovich, T. A Phase IB Trial of 24-Hour Intravenous PX-12, a Thioredoxin-1 Inhibitor, in Patients with Advanced Gastrointestinal Cancers. Invest. New Drugs. 2013, 31, 631–641. DOI: 10.1007/s10637-012-9846-2.
  • Li, X.; Wu, Z.; Xu, L.; Chi, C. L.; Chen, B. Q. Design, Synthesis, and Antitumor Evaluation of Novel Naphthalimide Derivatives. Med. Chem. Res. 2020, 29, 180–188. DOI: 10.1007/s00044-019-02471-w.
  • Wu, Z.; Li, X.; Chi, C. L.; Xu, L.; Sun, Y. Y.; Chen, B. Q. Synthesis and Antitumor Effects of a New Class of 1,2,4-Triazole Derivatives. Med. Chem. Res. 2021, 30, 142–151. DOI: 10.1007/s00044-020-02652-y.
  • Liu, H. Y.; Wang, H. X.; Li, X.; Wu, Z.; Li, C. W.; Liu, Y. M.; Li, W.; Chen, B. Q. Synthesis, Antitumor and Antimicrobial Evaluation of Novel 1,3,4-Thiadiazole Derivatives Bearing Disulfide Bond. Med. Chem. Res. 2018, 27, 1929–1940. DOI: 10.1007/s00044-018-2204-y.
  • Ghane, T.; Nozaki, D.; Dianat, A.; Vladyka, A.; Gutierrez, R.; Chinta, J. P.; Yitzchaik, S.; Calame, M.; Cuniberti, G. Interplay between Mechanical and Electronic Degrees of Freedom in π-Stacked Molecular Junctions: From Single Molecules to Mesoscopic Nanoparticle Networks. J. Phys. Chem. C. 2015, 119, 6344–6355. DOI: 10.1021/jp512524z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.