286
Views
55
CrossRef citations to date
0
Altmetric
Original Article

Interleukin-7 in T-cell acute lymphoblastic leukemia: An extrinsic factor supporting leukemogenesis?

, &
Pages 483-495 | Received 29 Oct 2004, Published online: 03 Aug 2009

REFERENCES

  • Uckun FM, Reaman G, Steinherez PG, Arthur DC, Sather H, Trigg M, Tubergen D, Gaynon P. Improved clinical outcome for children with T-lineage acute lymphoblastic leukemia after contemporary chemotherapy: a Children's Cancer Group Study. Leuk Lymphoma 1996;24:57–70.
  • Kersey JH. Fifty years of studies of the biology and therapy of childhood leukemia. Blood 1997;90:4243–4251.
  • Conroy LA, Alexander DR. The role of intracellular signalling pathways regulating thymocyte and leukemic T cell apoptosis. Leukemia 1996;10:1422–1435.
  • Raimondi SC. Cytogenetics of acute leukemias. In: Pui C, editor. Childhood leukemias. Cambridge: Cambridge Uni-versity Press; 1999. p 168–196.
  • Look AT. Oncogenic transcription factors in the human acute leukemias. Science 1997;278:1059–1064.
  • Prasad KS, Jordan JE, Koury MJ, Bondurant MC, Brandt SJ. Erythropoietin stimulates transcription of the TALl/SCL gene and phosphorylation of its protein products. J Biol Chem 1995;270:11603–11611.
  • Miller BA, Floros J, Cheung JY, Wojchowski DM, Bell L, Begley CG, Elwood NJ, Kreider J, Christian C. Steel factor affects SCL expression during normal erythroid differentia-tion. Blood 1994;84:2971–2976.
  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal transloca-dons in T lymphoblastic neoplasms. Cell 1991;66: 649–661.
  • Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306: 269–271
  • Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A, Stoppacciaro A, Tiveron C, Tatangelo L, Giovarelli M, et al. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. Embo J 2000;19:3337–3348.
  • Tycko B, Smith SD, Sklar J. Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. J Exp Med 1991;174:867–873.
  • Abraham KM, Levin SD, Marth JD, Forbush KA, Perlmut-ter RM. Thymic tumorigenesis induced by overexpression of p561ck. Proc Natl Acad Sci USA 1991;88: 3977–3981.
  • Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997;278: 1309–1312.
  • Carron C, Cormier F, Janin A, Lacronique V, Giovannini M, Daniel MT, Bernard 0, Ghysdael J. TEL-JAK2 transgenic mice develop T-cell leukemia. Blood 2000;95: 3891–3899.
  • Gouilleux-Gruart V, Gouilleux F, Desaint C, Claisse JF, Capiod JC, Delobel J, Weber-Nordt R, Dusanter-Fourt I, Dreyfus F, Groner B, Prin L. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 1996;87:1692–1697.
  • Astoul E, Edmunds C, Cantrell DA, Ward SG. PI 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models. Trends Immunol 2001;22:490–496.
  • Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C. Transcription factor NF-kappaB is constitu-tively activated in acute lymphoblastic leukemia cells. Leukemia 2000;14:399–402.
  • Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud 0, Gjertsen BT, Nolan GP. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 2004;118:217–228.
  • Green DR, Evan GI. A matter of life and death. Cancer Cell 2002;1:19–30.
  • Namen AE, Schmierer AE, March CJ, Overell RW, Park LS, Urdal DL, Mochizuki DY. B cell precursor growth-promot-ing activity. Purification and characterization of a growth factor active on lymphocyte precursors. J Exp Med 1988;167:988–1002.
  • Fry TJ, Mackall CL. Interleukin-7: from bench to clinic. Blood 2002;99:3892–3904.
  • von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R Lymphopenia in interleukin (IL)- 7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995;181:1519–1526.
  • von Freeden-Jeffry U, Solvason N, Howard M, Murray R. The earliest T lineage-committed cells depend on IL-7 for Bc1-2 expression and normal cell cycle progression. Im-munity 1997;7: 147–154.
  • Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994180:1955-1960.
  • Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995;2:223–238.
  • Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T( - )B( + )NK( +) severe combined immunodeficiency. Nat Genet 1998;20:394–397.
  • Schmitt C, Ktorza S, Sarun S, Blanc C, De Jong R, Debre P. CD34-expressing human thymocyte precursors proliferate in response to interleukin-7 but have lost myeloid differentia-tion potential. Blood 1993;82:3675–3685.
  • Okazaki H, Ito M, Sudo T, Hattori M, Kano S, Katsura Y, Minato N. IL-7 promotes thymocyte proliferation and maintains immunocompetent thymocytes bearing alpha beta or gamma delta T-cell receptors in vitro: synergism with IL-2. J Immunol 1989;143: 2917–2922.
  • Watson JD, Morrissey PJ, Namen AE, Conlon PJ, Widmer MB. Effect of IL-7 on the growth of fetal thymocytes in culture. J Immunol 1989;143: 1215–1222.
  • Brugnera E, Bhandoola A, Cibotti R, Yu Q, Guinter TI, Yamashita Y, Sharrow SO, Singer A. Coreceptor reversal in the thymus: signaled CD4 + 8 + thymocytes initially termi-nate CD8 transcription even when differentiating into CD8 + T cells. Immunity 2000;13:59–71.
  • Yu Q, Erman B, Bhandoola A, Sharrow SO, Singer A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into function-ally mature CD8 + T cells. J Exp Med 2003;197: 475–487.
  • Akashi K, Kondo M, Weissman IL. Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunol Rev 1998;165: 13–28.
  • Khaled AR, Li WQ, Huang J, Fry TJ, Khaled AS, Mackall CL, Muegge K, Young HA, Durum SK. Box deficiency partially corrects interleukin-7 receptor alpha deficiency. Immunity 2002;17: 561–573.
  • Maki K, Sunaga S, Ikuta K. The V-J recombination of T cell receptor-gamma genes is blocked in interleukin-7 receptor-deficient mice. J Exp Med 1996;184: 2423–2427.
  • He YW, Malek TR. Interleukin-7 receptor alpha is essential for the development of gamma delta + T cells, but not natural killer cells. J Exp Med 1996;184:289–293.
  • Moore TA, von Freeden-Jeffry U, Murray R, Zlotnik A. Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/- mice. J Immunol 1996;157: 2366–2373.
  • Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 1993;262: 1877–1880.
  • Ziegler SE, Morella KK, Anderson D, Kumaki N, Leonard WJ, Cosman D, Baumann H. Reconstitution of a functional interleukin (IL)- 7 receptor demonstrates that the IL-2 receptor gamma chain is required for IL-7 signal transduc-tion. Eur J Immunol 1995;25: 399–404.
  • Olosz F, Malek TR. Three loops of the common gamma chain ectodomain required for the binding of interleukin-2 and interleukin-7. J Biol Chem 2000;275:30100–30105.
  • Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, Ugazio AG, Johnston JA, Candotti F, O'Shea 11 et al. Mutations of Jak-3 gene in patients with autosomal severecombined immunedeficiency(S CID).Nature1995;377: 65–68.
  • Suzuki K, Nakajima H, Saito Y, Saito T, Leonard WJ, Iwamoto I. Janus kinase 3 (Jak3) is essential for common cytokine receptor gamma chain (gamma(c))-dependent signaling: comparative analysis of gamma(c), Jak3, and gamma(c) and Jak3 double-deficient mice. Int Immunol 2000;12:123–132.
  • Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, Nakamura M, Takeshita T. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996;14:179–205.
  • Jiang Q, Li WQ, Hofmeister RR, Young HA, Hodge DR, Keller JR, Khaled AR, Durum SK. Distinct regions of the interleukin-7 receptor regulate different Bc12 family mem-bers. Mol Cell Biol 2004;24:6501–6513.
  • Leonard WJ, O'Shea II. Jaks and STATs: biological implications. Annu Rev Immunol 1998;16:293–322.
  • Yu CR, Young HA, Ortaldo JR. Characterization of cytokine differential induction of STAT complexes in primary human T and NK cells. J Leukoc Biol 1998;64:245–258.
  • Foxwell BM, Beadling C, Guschin D, Kerr I, Cantrell D. Interleukin-7 can induce the activation of Jak 1, Jak 3 and STAT 5 proteins in murine T cells. Eur J Immunol 1995;25: 3041–3046.
  • Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL,, Sheehan KC, Yin L, Pennica D, Johnson EM Jr, Schreiber RD. Disruption of the Jakl gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998;93:373–383.
  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998;93: 841–850.
  • Davis RJ. Transcriptional regulation by MAP kinases. Mol Reprod Dev 1995;42:459–467.
  • Kerkhoff E, Rapp UR. Cell cycle targets of Ras/Raf signalling. Oncogene 1998;17:1457–1462.
  • Crawley JB, Rawlinson L, Lali FV, Page TH, Saklatvala J, Foxwell BM. T cell proliferation in response to interleukins 2 and 7 requires p38MAP kinase activation. J Biol Chem 1997;272:15023–15027.
  • Pages G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouyssegur J. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999;286:1374–1377.
  • Sugawara T, Moriguchi T, Nishida E, Takahama Y. Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 1998;9:565–574.
  • Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM. The influence of the MAPK pathway on T cell lineage commitment. Immunity 1997;7:609–618.
  • Crompton T, Gilmour KC, Owen MJ. The MAP kinase pathway controls differentiation from double-negative to double-positive thymocyte. Cell 1996;86:243–251.
  • Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4( +) T cells. J Exp Med 2001;194: 1711–1719.
  • Park J, Kim I, Oh YJ, Lee K, Han PL, Choi EJ. Activation of c-Jun N-terminal kinase antagonizes an anti-apoptotic action of Bc1-2. J Biol Chem 1997;272:16725–16728.
  • Merritt C, Enslen H, Diehl N, Conze D, Davis RJ, RinconM. Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8( +) but not CD4( +) T cells. Mol Cell Biol 2000;20:936–946.
  • Rincon M, Whitmarsh A, Yang DD, Weiss L, Derijard B, Jayaraj P, Davis RJ, Flavell RA. The JNK pathway regulates the in vivo deletion of immature CD4( + )CD8( +) thymo-cytes. J Exp Med 1998188:1817-1830.
  • Diehl NL, Enslen H, Fortner KA, Merritt C, Stetson N, Charland C, Flavell RA, Davis RJ, Rincon M. Activation of the p38 mitogen-activated protein kinase pathway arrests cell cycle progression and differentiation of immature thymocytes in vivo. J Exp Med 2000;191: 321–334.
  • Vanhaesebroeck B, Waterfield MD. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 1999;253:239–254.
  • Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an 5H2-like region. Science 1991;254:274–277.
  • Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nat-ure 1995;376:599–602.
  • Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP, Cohen P, Alessi DR, Lucocq J. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 1999;337: 575–583.
  • Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999;253:210–229.
  • Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 1998;95:13513–13518.
  • Seminario MC, Wange RL. Signaling pathways of D3-phosphoinositide-binding kinases in T cells and their regulation by PTEN. Semin Immunol 2002;14:27–36.
  • Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 1998;95:15406–15411.
  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten + /- mice. Proc Natl Acad Sci USA 2001;98:10320–10325.
  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet 1998;19:348–355.
  • Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M, et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001;14:523–534.
  • Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN. Transduction of interleukin-2 antiapoptotic and pro-liferative signals via Akt protein kinase. Proc Natl Acad Sci USA 1997;94: 3627–3632.
  • Lauder A, Castellanos A, Weston K. c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of T cells and is required for PKB-mediated protection from apoptosis. Mol Cell Biol 2001;21: 5797–5805.
  • Mok CL, Gil-Gomez G, Williams 0, Coles M, Taga S, Tolaini M, Norton T, Kioussis D, Brady HJ. Bad can act as a key regulator of T cell apoptosis and T cell development. J Exp Med 1999;189:575–586.
  • Lafont V, Astoul E, Laurence A, Liautard J, Cantrell D. The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and riboso-mal S6 kinase 1. FEBS Lett 2000;486: 38–42.
  • Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 1998;273:19929–19932.
  • Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT, Woodgett JR, Ohashi PS. Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3. J Exp Med 2000;192: 99–104.
  • Parsons MJ, Jones RG, Tsao MS, Odermatt B, Ohashi PS, Woodgett JR. Expression of active protein kinase B in T cells perturbs both T and B cell homeostasis and promotes inflammation. J Immunol 2001;167:42–48.
  • Borlado LR, Redondo C, Alvarez B, Jimenez C, Criado LM, Flores J, Marcos MA, Martinez AC, Balomenos D, Carrera AC. Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. Faseb J 2000;14:895–903.
  • Kane LP, Shapiro VS, Stokoe D, Weiss A. Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 1999;9:601–604.
  • Uckun FM, Tuel-Ahlgren L, Obuz V, Smith R, Dibirdik I, Hanson M, Langlie MC, Ledbetter JA. Interleukin 7 receptor engagement stimulates tyrosine phosphorylation, inositol phospholipid turnover, proliferation, and selective differen-tiation to the CD4 lineage by human fetal thymocytes. Proc Natl Acad Sci USA 1991;88:6323–6327.
  • Shade N, Dadi HK, Roffman CM. JAK3 protein tyrosine kinase mediates interleukin-7-induced activation of phospha-tidylinosito1-3' kinase. Blood 1995;86: 2077–2085.
  • Pallard C, Stegmann AP, van Kleffens T, Smart F, Venkitaraman A, Spits H. Distinct roles of the phosphatidy-linositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 1999;10:525–535.
  • Sade H, Sarin A. IL-7 inhibits dexamethasone-induced apoptosis via Akt/PKB in mature, peripheral T cells. Eur J Immunol 2003;33:913–919.
  • Gringhuis SI, de Leh LF, Verschuren EW, Borger P, Vellenga E. Interleukin-7 upregulates the interleukin-2-gene expression in activated human T lymphocytes at the transcriptional level by enhancing the DNA binding activities of both nuclear factor of activated T cells and activator protein-1. Blood 1997;90:2690–2700.
  • Gomez J, Martinez AC, Gonzalez A, Garcia A, Rebollo A. The Bc1-2 gene is differentially regulated by IL-2 and IL-4: role of the transcription factor NF-AT. Oncogene 1998;17: 1235–1243.
  • Lamberti A, Petrella A, Pascale M, Romano MF, Bisogni R, Vita N, Venuta S, Turco MC. Activation of NF-kappaB/Rel transcription factors in human primary peripheral blood mononuclear cells by interleukin 7. Biol Chem 2004;385:415–417.
  • Qin JZ, Zhang CL, Kamarashev J, Dummer R, Burg G, Dobbeling U. Interleukin-7 and interleukin-15 regulate the expression of the bc1-2 and c-myb genes in cutaneous T-cell lymphoma cells. Blood 2001;98:2778–2783.
  • Salomoni P, Perrotti D, Martinez R, Franceschi C, Calabretta B. Resistance to apoptosis in CTLL-2 cells constitutively expressing c-Myb is associated with induction of BCL-2 expression and Myb-dependent regulation of bc1-2 promoter activity. Proc Natl Acad Sci USA 1997;94: 3296–3301.
  • Scupoli MT, Vinante F, Krampera M, Vincenzi C, Nadali G, Zampieri F, Ritter MA, Eeren E, Santini F, Pizzolo G. Thymic epithelial cells promote survival of human T-cell acute lymphoblastic leukemia blasts: the role of interleukin-7. Haematologica 2003;88:i229–1237.
  • Touw I, Pouwels K, van Agthoven T, van Gurp R, Budel L, Hoogerbrugge H, Delwel R, Goodwin R, Namen A, Low-enberg B. Interleukin-7 is a growth factor of precursor B and T acute lymphoblastic leukemia. Blood 1990;75:2097–2101.
  • Dibirdik I, Langlie MC, Ledbetter JA, Tuel-Ahlgren L, Obuz V, Waddick KG, Gajl-Peczalska K, Schieven GL, Uckun FM. Engagement of interleukin-7 receptor stimulates tyr-osine phosphorylation, phosphoinositide turnover, and clonal proliferation of human T-lineage acute lymphoblastic leuke-mia cells. Blood 1991;78: 564–570.
  • Digel W, Schmid M, Heil G, Conrad P, Gillis S, Porzsolt F. Human interleukin-7 induces proliferation of neoplastic cells from chronic lymphocytic leukemia and acute leukemias. Blood 1991;78:753–759.
  • Karawajew L, Ruppert V, Wuchter C, Kosser A, Schrappe M, Dorken B, Ludwig WD. Inhibition of in vitro sponta-neous apoptosis by IL-7 correlates with bc1-2 up-regulation, cortical/mature immunophenotype, and better early cytor-eduction of childhood T-cell acute lymphoblastic leukemia. Blood 2000;96: 297–306.
  • Barata JT, Cardoso AA, Nadler LM, Boussiotis VA. Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood 2001;98:1524–1531.
  • Eder M, Ottmann OG, Hansen-Hagge TE, Bartram CR, Gillis S, Hoelzer D, Ganser A. Effects of recombinant human IL-7 on blast cell proliferation in acute lymphoblastic leukemia. Leukemia 1990;4: 533–540.
  • Barata JT, Boussiotis VA, Yunes JA, Ferrando AA, Moreau LA, Veiga JP, Sallan SE, Look AT, Nadler LM, Cardoso AA. IL-7-dependent human leukemia T-cell line as a valuable tool for drug discovery in T-ALL. Blood 2004103:1891-1900.
  • Nishimura M, Kakinuma S, Yamamoto D, Kobayashi Y, Suzuki G, Sado T, Shimada Y. Elevated interleukin-9 receptor expression and response to interleukins-9 and -7 in thymocytes during radiation-induced T-cell lymphoma-genesis in B6C3F1 mice. J Cell Physiol 2004;198: 82–90.
  • Wolfraim LA, Fernandez TM, Mamura M, Fuller WL,, Kumar R, Cole DE, Byfield S, Felici A, Flanders KC, Walz TM, et al. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 2004;351:552–559.
  • Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 19916:1915-1922.
  • Harrington EA, Bennett MR, Fanidi A, Evan GI. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. Embo J 1994;13:3286–3295.
  • Overell RW, Clark L, Lynch D, Jerzy R, Schmierer A, Weisser KE, Namen AE, Goodwin RG. Interleukin-7 retroviruses transform pre-B cells by an autocrine mechan-ism not evident in Abelson murine. Mol Cell Biol 1991;11:1590–1597.
  • Rich BE, Campos-Torres J, Tepper RI, Moreadith RW, Leder P. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J Exp Med 1993;177:305–316.
  • Laouar Y, Crispe IN, Flavell RA. Overexpression of IL-7R alpha provides a competitive advantage during early T-cell development. Blood 2004;103: 1985–1994.
  • Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA, Boussiotis VA. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 2004;200:659–669.
  • Malstrom S, Tili E, Kappes D, Ceci JD, Tsichlis PN. Tumor induction by an Lck-MyrAkt transgene is delayed by mechanisms controlling the size of the thymus. Proc Natl Acad Sci USA 2001;98:14967–14972.
  • Cheng JT, Cobb MH, Baer R. Phosphorylation of the TALI oncoprotein by the extracellular-signal-regulated protein kinase ERK1. Mol Cell Biol 1993;13: 801–808.
  • Xia Y, Hwang LY, Cobb MH, Baer R. Products of the TAL2 oncogene in leukemic T cells: bHLH phosphoproteins with DNA-binding activity. Oncogene 1994;9:1437–1446.
  • Sweeney EB, Foss FM, Murphy ?, Jr, vanderSpek JC. Interleukin 7 (IL-7) receptor-specific cell killing by DAB389 IL-7: a novel agent for the elimination of IL-7 receptor positive cells. Bioconjug Chem 1998;9: 201–207.
  • Baier TG, Jenne EW, Blum W, Schonberg D, Hartmann KIK. Influence of antibodies against IGF-I, insulin or their receptors on proliferation of human acute lymphoblastic leukemia cell lines. Leuk Res 1992;16:807–814.
  • Tan JT, Dud! E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Nat! Acad Sci USA 2001;98:8732–8737.
  • Seddon B, Tomlinson P, Zamoyska R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol 2003;4: 680–686.
  • Alderson MR, Sassenfeld HM, Widmer MB. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood. J Exp Med 1990;172: 577–587.
  • Bello-Fernandez C, Stasakova J, Renner A, Carballido-Perrig N, Koening M, Waclavicek M, Madjic 0, Oehler L, Haas 0, Carballido JM, et al. Retrovirus-mediated IL-7 expression in leukemic dendritic cells generated from primary acute myelogenous leukemias enhances their functional properties. Blood 2003;101: 2184–2190.
  • O'Shea jj, Pesu M, Bone DC, Changelian PS. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 2004;3: 555–564.
  • Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003;4: 257–262.
  • Hu L, Zaloudek C, Mills GB, Gray J, Jaffe RB. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidy-linositol 3-kinase inhibitor (LY294002). Clin Cancer Res 2000;6: 880–886.
  • Edwards E, Geng L, Tan J, Onishko H, Donnelly E, Hallahan DE. Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res 2002;62:4671–4677.
  • Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T. Phosphatidylinosito1-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 2002;21: 5868–5876.
  • Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, Minion DJ, Halter RJ, Wipf P, Abraham R, et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 2004;3: 763–772.
  • Yang L, Dan HC, Sun M, Liu Q, Sun X1\4, Feldman RI, Hamilton AD, Polokoff M, Nicosia SV, Herlyn M, etal. Akt/ protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004;64: 4394–4399.
  • Uddin S, Hussain A, Al-Hussein K, Platanias LC, Bhatia KG. Inhibition of phosphatidylinositol 3'-kinase induces preferential killing of PTEN-null T leukemias through AKT pathway. Biochem Biophys Res Commun 2004;320: 932–938.
  • Brown VI, Fang J, Alcorn K, Barr R, Kim JM, Wasserman R, Grupp SA. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc Nat! Acad Sci USA 2003;100: 15113–15118.
  • Gonzalez J, Harris T, Childs G, Prystowsky MB. Rapamycin blocks IL-2-driven T cell cycle progression while preserving T cell survival. Blood Cells Mol Dis 2001;27:572–585.
  • Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000;19:6680–6686.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.