72
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Ubiquitin Ligases in Malignant Lymphoma

&
Pages 1329-1339 | Received 20 Dec 2003, Accepted 20 Dec 2003, Published online: 03 Aug 2009

Reference

  • Hershko, A. and Ciechanover, A. (1998) "The ubiquitin system", Annu. Rev. Biochem., 67, 425–479.
  • Pickart, CM. (2001) "Mechanisms underlying ubiquitination", Annu. Rev. Biochem., 70, 503–533.
  • Deshaies, R.J. (1999) "SCF and Cullin/Ring H2-based ubiquitin ligases", Annu. Rev. Cell. Dev. Biol., 15, 435–467.
  • Verma, R. and Deshaies, R.J. (2000) "A proteasome howdunit: the case of the missing signal", Cell, 101, 341–344.
  • Jackson, P.K., Eldridge, A.G., Freed, E., Furstenthal, L., Hsu, J.Y., Kaiser, B.K. and Reimann, J.D. (2000) "The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases", Trends Cell. Biol., 10, 429–439.
  • Lu, Z., Xu, S., Joazeiro, C., Cobb, M.H. and Hunter, T. (2002) "The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2", Mol. Cell, 9, 945–956.
  • Coscoy, L., Sanchez, D.J. and Ganem, D. (2001) "A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regu-lates endocytosis of proteins involved in immune recognition", J. Cell. Biol., 155, 1265–1273.
  • Aravind, L. and Koonin, E.V. (2000) "The U box is a modified RING finger — a common domain in ubiquitination", Curr. Biol., 10, R132—R134.
  • Pagano, M., Tam, S.W., Theodoras, A.M., Beer-Romero, P., Del Sal, G., Chau, V., et al. (1995) "Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent lcinase inhibitor p27", Science, 269, 682–685.
  • Joazeiro, CA., Wing, S.S., Huang, H., Leverson, JD., Hunter, T. and Liu, Y.C. (1999) "The tyrosine lcinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase", Science, 286, 309–312.
  • Page, A.M. and Hieter, P. (1999) "The anaphase-promoting complex: new subunits and regulators", Annu. Rev. Biochem., 68, 583— 609.
  • Feldman, R.M., Correll, C.C., Kaplan, K.B. and Deshaies, R.J. (1997) "A complex of Cdc4p, Skplp, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic lp", Cell, 91, 221 — 230.
  • Skowyra, D., Craig, K.L., Tyers, M., Elledge, Si. and Harper, J.W. (1997) "F-box proteins are receptors that recruit phosphory-lated substrates to the SCF ubiquitin-ligase complex", Cell, 91, 209–219.
  • Peters, J.M. (2002) "The anaphase-promoting complex: proteolysis in mitosis and beyond", MoL Cell, 9, 931–943.
  • Leverson, JD., Joazeiro, CA., Page, A.M., Huang, H., Hieter, P. and Hunter, T. (2000) "The APC11 RING-H2 finger mediates E2- dependent ubiquitination", MoL Biol. Cell, 11, 2315–2325.
  • DeSalle, L.M. and Pagano, M. (2001) "Regulation of the G1 to S transition by the ubiquitin pathway", FEBS Lett., 490, 179–189.
  • Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W. and Elledge, Si. (1996) "SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box", Cell, 86, 263 — 274.
  • Bartel, B., Wunning, I. and Varshavsky, A. (1990) "The recogni-tion component of the N-end rule pathway", EMBO J., 9, 3179–3189.
  • Bachmair, A., Finley, D. and Varshavsky, A. (1986) "In vivo half-life of a protein is a function of its amino-terminal residue", Science, 234, 179— 186.
  • Bachmair, A. and Varshavsky, A. (1989) "The degradation signal in a short-lived protein", Cell, 56, 1019 — 1032.
  • Langdon, WY., Hartley, J.W., Klinken, S.P., Ruscetti, S.K. and Morse, H.C. III (1989) "v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas", Proc. Natl. Acad. Sci. USA, 86, 1168 — 1172.
  • Blake, Ti., Shapiro, M., Morse, H.C. III and Langdon, W.Y. (1991) "The sequences of the human and mouse c-cbl proto-oncogenes show v-ebl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif', Oncogene, 6, 653–657.
  • Lupher, ML., Jr., Rao, N., Eck, M.J. and Band, H. (1999) "The Cbl protooncoprotein: a negative regulator of immune receptor signal transduction", ImmunoL Today, 20, 375–382.
  • Yokouchi, M., Kondo, T., Houghton, A., Bartkiewicz, M., Home, W.C., Zhang, H., et al. (1999) "Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7", J. Biol. Chem., 274, 31707 — 31712.
  • Levkowitz, G., Waterman, H., Ettenberg, S.A., Katz, M., Tsygankov, A.Y., Alroy, I., et al. (1999) "Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1", MoL Cell, 4, 1029 — 1040.
  • Levkowitz, G., Waterman, H., Zamir, E., Kam, Z., Oved, S., Langdon, WY., et al. (1998) "c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor", Genes Dev., 12, 3663–3674.
  • Donovan, JA., Wange, R.L., Langdon, W.Y. and Samelson, L.E. (1994) "The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor", J. Biol. Chem., 269, 22921–22924.
  • Marcilla, A., Rivero-Lezcano, 0.M., Agarwal, A. and Robbins, K.C. (1995) "Identification of the major tyrosine lcinase substrate in signaling complexes formed after engagement of Fe gamma receptors", J. Biol. Chem., 270, 9115 — 9120.
  • Miyake, S., Lupher, ML., Jr., Druker, B. and Band, H. (1998) "The tyrosine lcinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha", Proc. Natl. Acad. Sci. USA, 95, 7927–7932.
  • Lee, P.S., Wang, Y., Dominguez, M.G., Yeung, Y.G., Murphy, MA., Bowtell, D.D. and Stanley, ER. (1999) "The Cbl proto- oncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation", EMBO J., 18, 3616— 3628.
  • Peschard, P., Fournier, TM., Lamorte, L., Naujokas, MA., Band, H., Langdon, W.Y. and Park, M. (2001) "Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine lcinase converts it into a transforming protein", MoL Cell, 8, 995–1004.
  • Langdon, WY., Hyland, C.D., Grumont, R.J. and Morse, H.C. III (1989) "The c-cbl proto-oncogene is preferentially expressed in thymus and testis tissue and encodes a nuclear protein", J. ViroL, 63, 5420— 5424.
  • Sharfe, N., Freywald, A., Toro, A. and Roifman, C.M. (2003) "Ephrin-A 1 induces c-Cbl phosphorylation and EphA receptor down-regulation in T cells", J. Immunol., 170, 6024 — 6032.
  • Fukazawa, T., Reedquist, K.A., Trub, T., Soltoff, S., Pancha-moorthy, G., Druker, B., etal. (1995) "The 5H3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-lcinase", J. Biol. Chem., 270, 19141–19150.
  • Smit, L., van der Horst, G. and Borst, J. (1996) "Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with She-Grb2, Crk, and Crk-L adaptors", J. Biol. Chem., 271, 8564–8569.
  • Kyo, S., Sada, K., Qu, X., Maeno, K., Miah, S.M., Kawauchi-Kamata, K. and Yamamura, H. (2003) "Negative regulation of Lyn protein-tyrosine lcinase by c-Cbl ubiquitin-protein ligase in Fe varepsilon RI-mediated mast cell activation", Genes Cells, 8, 825 — 836.
  • Sohn, H.W., Gu, H. and Pierce, S.K. (2003) "Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine lcinase Syk", J. Exp. Med., 197, 1511–1524.
  • Cenciarelli, C., Hou, D., Hsu, K.C., Rellahan, B.L., Wiest, DL., Smith, H.T., et al. (1992) "Activation-induced ubiquitination of the T cell antigen receptor", Science, 257, 795–797.
  • Cenciarelli, C., Wilhelm, KG., Jr., Guo, A. and Weissman, A.M. (1996) "T cell antigen receptor ubiquitination is a consequence of receptor-mediated tyrosine lcinase activation", J. Biol. Chem., 271, 8709— 8713.
  • Rao, N., Dodge, I. and Band, H. (2002) "The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine lcinase signaling in the immune system", J. Leukoc. Biol., 71, 753–763.
  • Naramura, M., Kole, H.K., Hu, R.J. and Gu, H. (1998) "Altered thymic positive selection and intracellular signals in Cbl-deficient mice", Proc. Natl. Acad. Sci. USA, 95, 15547 — 15552.
  • Ohana-Malka, 0., Benharroch, D., Isakov, N., Prinsloo, I., Shubinsky, G., Sacks, M. and Gopas, J. (2003) "Selectins and anti-CD15 (Lewis x/a) antibodies transmit activation signals in Hodgkin's lymphoma-derived cell lines", Exp. HematoL, 31, 1057— 1065.
  • Bashir, T. and Pagano, M. (2003) "Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis", Adv. Cancer Res., 88, 101–144.
  • Marti, A., Wirbelauer, C., Scheffner, M. and Krek, W. (1999) "Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-I degradation", Nat. Cell. Biol., 1, 14–19.
  • Gstaiger, M., Jordan, R., Lim, M., Catzavelos, C., Mestan, J., Slingerland, J. and Krek, W. (2001) "Skp2 is oncogenic and overexpressed in human cancers", Proc. Natl. Acad. Sci. USA, 98, 5043— 5048.
  • Bilodeau, M., Talarmin, H., Ilyin, G., Rescan, C., Glaise, D., Cariou, S., et al. (1999) "Skp2 induction and phosphorylation is associated with the late GI phase of proliferating rat hepatocytes", FEBS Lett., 452, 247–253.
  • Yeh, K.H., Kondo, T., Zheng, J., Tsvetkov, L.M., Blair, J. and Zhang, H. (2001) "The F-box protein SKP2 binds to the phosphorylated threonine 380 in cyclin E and regulates ubiqui-tin-dependent degradation of cyclin E", Biochem. Biophys. Res. Commun., 281, 884–890.
  • Zhang, H., Kobayashi, R., Galaktionov, K. and Beach, D. (1995) "p19Skp 1 and p455kp2 are essential elements of the cyclin A-CDK2 S phase lcinase", Cell, 82, 915–925.
  • Nakayama, K.I., Hatakeyama, S. and Nakayama, K. (2001) "Regulation of the Cell Cycle at the G(1)-S Transition by Proteolysis of Cyclin E and p27(Kip 1)", Biochem. Biophys. Res. Commun., 282, 853–860.
  • Bornstein, G., Bloom, J., Sitry-Shevah, D., Nakayama, K., Pagano, M. and Hershko, A. (2003) "Role of the SCFSkp2 Ubiquitin Ligase in the Degradation of p21Cip 1 in S Phase", J. Biol. Chem., 278, 25752–25757.
  • Kamura, T., Hara, T., Kotoshiba, S., Yada, M., Ishida, N., Imalci, H., et al. (2003) "Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation", Proc. Natl. Acad. Sci. USA, 100, 10231–10236.
  • Germain, D., Russell, A., Thompson, A. and Hendley, J. (2000) "Ubiquitination of free cyclin DI is independent of phosphoryla-tion on threonine 286", J. Biol. Chem., 275, 12074— 12079.
  • Bhattacharya, S., Garriga, J., Calbo, J., Yong, T., Haines, D.S. and Grana, X. (2003) "SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells", Oncogene, 22, 2443–2451.
  • Kim, S.Y., Herbst, A., Tworkowslci, K.A., Salghetti, S.E. and Tansey, W.P. (2003) "Skp2 regulates Myc protein stability and activity", MoL Cell, 11, 1177 — 1188.
  • Latres, E., Chiarle, R., Schulman, BA., Pavletich, NP., Pellicer, A., Inghirami, G. and Pagano, M. (2001) "Role of the F-box protein Skp2 in lymphomagenesis", Proc. Natl. Acad. Sci. USA, 98, 2515–2520.
  • Lim, M.S., Adamson, A., Lin, Z., Perez-Ordonez, B., Jordan, R.C., Tripp, S., et al. (2002) "Expression of Skp2, a p27(Kip I) ubiquitin ligase, in malignant lymphoma: correlation with p27(Kip I) and proliferation index", Blood, 100, 2950–2956.
  • Li, M., Chen, D., Shiloh, A., Luo, J., Nikolaev, A.Y., Qin, J. and Gu, W. (2002) "Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization", Nature, 416, 648–653.
  • Selci, R., Okamura, T., Koga, H., Yakushiji, K., Hashiguchi, M., Yoshimoto, K., et al. (2003) "Prognostic significance of the F-box protein Skp2 expression in diffuse large B-cell lymphoma", Am. J. Hematol., 73, 230–235.
  • Garcia, J.F., Camacho, FT., Morente, M., Fraga, M., Montalban, C., Alvaro, T., et al. (2003) "Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays", Blood, 101, 681–689.
  • Bhatia, K., Huppi, K., Spangler, G., Siwarslci, D., Iyer, R. and Magrath, I. (1993) "Point mutations in the c-Myc transactivation domain are common in Burlcitt's lymphoma and mouse plasma-cytomas", Nat. Genet., 5, 56–61.
  • Levens, D.L. (2003) Reconstructing MYC. Genes Dev., 17, 1071 — 1077.
  • Salghetti, SE., Kim, S.Y. and Tansey, W.P. (1999) "Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc", EMBO J., 18, 717–726.
  • Marti, A., Wirbelauer, C., Scheffner, M. and Krek, W. (1999) "Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-I degradation", Nat. Cell. Biol., 1, 14–19.
  • Chan, JA., Olvera, M., Lai, R., Naing, W., Rezk, S.A. and Brynes, R.K. (2002) "Immunohistochemical expression of the transcription factor DP-1 and its heterodimeric partner E2F- 1 in non-Hodgkin lymphoma", App!. Immunohistochem. Mol. Morphol., 10, 322 — 326.
  • Carrano, A.C. and Pagano, M. (2001) "Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression", J. Cell. Biol., 153, 1381–1390.
  • Dow, R., Hendley, J., Pirlcmaier, A., Musgrove, E.A. and Germain, D. (2001) "Retinoic acid-mediated growth arrest requires ubiquitylation and degradation of the F-box protein Skp2", J. Biol. Chem., 276, 45945–45951.
  • Koga, H., Harada, M., Ohtsubo, M., Shishido, S., Kumemura, H., Hanada, S., et al. (2003) "Troglitazone induces p27Kip 1 -asso-ciated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells", Hepatology, 37, 1086— 1096.
  • Varshavsky, A. (1996) "The N-end rule: functions, mysteries, uses", Proc. Natl. Acad. Sci. USA, 93, 12142–12149.
  • Byrd, C., Turner, G.C. and Varshavsky, A. (1998) "The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor", EMBO J., 17, 269–277.
  • Rao, H., Uhlmann, F., Nasmyth, K. and Varshavsky, A. (2001) "Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability", Nature, 410, 955–959.
  • Hough, MR., Chen, E., Rosic-Kablar, S., Lim, M.S. and Dube, I.D. (2002) "Loss of Ubr 1 synergizes with ectopic expression of HOXI 1 to promote follicular B cell lymphoma", Blood, Volume 100(11).
  • Yang, Y. and Yu, X. (2003) "Regulation of apoptosis: the ubiquitous way", FASEB J., 17, 790–799.
  • Oren, M. (1999) "Regulation of the p53 tumor suppressor protein", J. Biol. Chem., 274, 36031 — 36034.
  • Haupt, Y., Maya, R., Kazaz, A. and Oren, M. (1997) "Mdm2 promotes the rapid degradation of p53", Nature, 387, 296–299.
  • Kubbutat, M.H., Jones, S.N. and Vousden, K.H. (1997) "Regula-tion of p53 stability by Mdm2", Nature, 387, 299–303.
  • Balint, E.E. and Vousden, K.H. (2001) "Activation and activities of the p53 tumour suppressor protein", Br. J. Cancer, 85, 1813 — 1823.
  • Sherr, C.J. (2001) "The INK4a/ARF network in tumour suppres-sion", Nat. Rev. Mol. Cell. Biol., 2, 731–737.
  • Wessendorf, S., Schwaenen, C., Kohlhammer, H., Kienle, D., Wrobel, G., Barth, T.F., et al. (2003) "Hidden gene amplifications in aggressive B-cell non-Hodgkin lymphomas detected by micro-array-based comparative genomic hybridization", Oncogene, 22, 1425 — 1429.
  • Kupper, M., Joos, S., von Bonin, F., Daus, H., Pfreundschuh, M., Lichter, P. and Trumper, L. (2001) "MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies", Br. J. HaematoL, 112, 768–775.
  • Moller, MB., Nielsen, 0. and Pedersen, N.T. (2002) "Frequent alteration of MDM2 and p53 in the molecular progression of recurring non-Hodgkin's lymphoma", Histopathology, 41, 322 — 330.
  • Momand, J., Wu, H.H. and Dasgupta, G. (2000) "MDM2 — master regulator of the p53 tumor suppressor protein", Gene, 242, 15 — 29.
  • Daujat, S., Neel, H. and Piette, J. (2001) "Preferential expression of Mdm2 oncogene during the development of neural crest and its derivatives in mouse early embryogenesis", Mech. Dev., 103, 163 — 165.
  • Cory, S. and Adams, J.M. (2002) "The Bc12 family: regulators of the cellular life-or-death switch", Nat. Rev. Cancer, 2, 647–656.
  • Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C. and Croce, C.M. (1984) "Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation", Science, 226, 1097 — 1099.
  • Fader!, S., Keating, M.J., Do, K.A., Liang, S.Y., Kantarjian, H.M., O'Brien, S., et al. (2002) "Expression profile of proteins and their prognostic significance in patients with chronic lympho-cytic leukemia (CLL)", Leukemia, 16, 1045 —1052.
  • Gottardi, D., Alfarano, A., De Leo, A.M., Stacchini, A., Aragno, M., Rigo, A., et al. (1996) "In leukaemic CD5 + B cells the expression of BCL-2 gene family is shifted toward protection from apoptosis", Br. J. HaematoL, 94, 612 — 618.
  • Gascoyne, RD., Adomat, S.A., Krajewslci, S., Krajewska, M., Horsman, D.E., Tolcher, A.W., et al. (1997) "Prognostic significance of Bc1-2 protein expression and Bc1-2 gene rearrange-ment in diffuse aggressive non-Hodgkin's lymphoma", Blood, 90, 244— 251.
  • Rassidalcis, G.Z., Medeiros, Li., Vassilakopoulos, T.P., Viviani, S., Bonfante, V., Nadali, G., et al. (2002) "BCL-2 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease predicts a poorer prognosis in patients treated with ABVD or equivalent regimens", Blood, 100, 3935— 3941.
  • Viatour, P., Bentires-Alj, M., Chariot, A., Deregowslci, V., de Leval, L., Merville, M.P. and Bours, V. (2003) "NF- kappa B2/ p100 induces Bc1-2 expression", Leukemia, 17, 1349–1356.
  • Breitschopf, K., Haendeler, J., Malchow, P., Zeiher, A.M. and Dimmeler, S. (2000) "Posttranslational modification of Bc1-2 facilitates its proteasome-dependent degradation: molecular char-acterization of the involved signaling pathway", MoL Cell. Biol., 20, 1886 — 1896.
  • Dimmeler, S., Breitschopf, K., Haendeler, J. and Zeiher, A.M. (1999) "Dephosphorylation targets Bc1-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway", J. Exp. Med., 189, 1815 — 1822.
  • Marshansky, V., Wang, X., Bertrand, R., Luo, H., Duguid, W., Chinnadurai, G., et al. (2001) "Proteasomes modulate balance among proapoptotic and antiapoptotic Bc1-2 family members and compromise functioning of the electron transport chain in leukemic cells", J. ImmunoL, 166, 3130–3142.
  • Pei, X.Y., Dai, Y. and Grant, S. (2003) "The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bc1-2 inhibitor HA14-1 in multiple myeloma cells", Leukemia, 17, 2036–2045.
  • Orlowski, R.Z., Stinchcombe, T.E., Mitchell, B.S., Shea, T.C., Baldwin, AS., Stahl, S., et al. (2002) "Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hemato-logic malignancies", J. Clin. OncoL, 20, 4420–4427.
  • Li, Q. and Verma, I.M. (2002) "NF-kappaB regulation in the immune system", Nat. Rev. Immunol., 2, 725–734.
  • Coux, 0. and Goldberg, A.L. (1998) "Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor kappaBl", J. Biol. Chem., 273, 8820–8828.
  • Thome, M. and Tschopp, J. (2003) "TCR-induced NF-kappaB activation: a crucial role for Carma 1, &HO and MALT!", Trends Immunol., 24, 419–424.
  • Davis, RE., Brown, K.D., Siebenlist, U. and Staudt, L.M. (2001) "Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells", J. Exp. Med., 194, 1861–1874.
  • Krappmann, D., Emmerich, F., Kordes, U., Scharschmidt, E., Dorken, B. and Scheidereit, C. (1999) "Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Stern-berg cells", Oncogene, 18, 943–953.
  • Salghetti, SE., Muratani, M., Wijnen, H., Futcher, B. and Tansey, W.P. (2000) "Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis", Proc. Natl. Acad. Sci. USA, 97, 3118–3123.
  • Chang, L. and Karin, M. (2001) "Mammalian MAP lcinase signalling cascades", Nature, 410, 37–40.
  • Kamiguti, AS., Harris, R.J., Slupsky, J.R., Baker, P.K., Cawley, J.C. and Zuzel, M. (2003) "Regulation of hairy-cell survival through constitutive activation of mitogen-activated protein lcinase pathways", Oncogene, 22, 2272–2284.
  • Yurchenko, V., Xue, Z. and Sadofsky, M. (2003) "The RAG! N-terminal domain is an E3 ubiquitin ligase", Genes Dev., 17, 581 — 585.
  • Jason, Li., Moore, S.C., Lewis, J.D., Lindsey, G. and Ausio, J. (2002) "Histone ubiquitination: a tagging tail unfolds?", Bioessays, 24, 166— 174.
  • Thorley-Lawson, D.A. (2001) "Epstein-Barr virus: exploiting the immune system", Nat. Rev. Immunol., 1, 75–82.
  • Ikeda, M., Ikeda, A., Longan, L.C. and Longnecker, R. (2000) "The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases", Virol-ogy, 268, 178–19!.
  • Ikeda, A., Caldwell, R.G., Longnecker, R. and Ikeda, M. (2003) "Itchy, a Nedd4 ubiquitin ligase, downregulates latent membrane protein 2A activity in B-cell signaling", J. ViroL, 77, 5529–5534.
  • Wilkinson, K.D. (1997) "Regulation of ubiquitin-dependent processes by deubiquitinating enzymes", FASEB J., 11, 1245 — 1256.
  • Wing, S.S. (2003) "Deubiquitinating enzymes —the importance of driving in reverse along the ubiquitin-proteasome pathway", Int. J. Biochem. Cell. Biol., 35, 590 — 605.
  • Zhu, Y., Carroll, M., Papa, FR., Hochstrasser, M. and D'Andrea, A.D. (1996) "DUB-1, a deubiquitinating enzyme with growth-suppressing activity", Proc. Natl. Acad. Sci. USA, 93, 3275–3279.
  • Gray, D.A., Inazawa, J., Gupta, K., Wong, A., Ueda, R. and Takahashi, T. (1995) "Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors", Oncogene, 10, 2179 — 2183.
  • Robzyk, K., Recht, J. and Osley, MA. (2000) "Rad6-dependent ubiquitination of histone H2B in yeast", Science, 287, 501–504.
  • Mimnaugh, E.G., Chen, H.Y., Davie, J.R., Celis, J.E. and Neckers, L. (1997) "Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response", Biochemistry, 36, 14418 — 14429.
  • Zapata, J.M., Pawlowski, K., Haas, E., Ware, CF., Godzik, A. and Reed, J.C. (2001) "A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains", J. Biol. Chem., 276, 24242–24252.
  • Holowaty, M.N., Zeghouf, M., Wu, H., Tellam, J., Athanasopou-los, V., Greenblatt, J. and Frappier, L. (2003) "Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7", J. Biol. Chem., 278, 29987–29994.
  • Holowaty, M.N., Sheng, Y., Nguyen, T., Arrowsmith, C. and Frappier, L. (2003) "Protein Interaction Domains of the Ubiqui-tin-specific Protease, USP7/HAUSP", J. Biol. Chem., 278, 47753 — 47761.
  • Munzert, G., Kirchner, D., Stobbe, H., Bergmann, L., Schmid, R.M., Dohner, H. and Heimpel, H. (2002) "Tumor necrosis factor receptor-associated factor 1 gene overexpression in B-cell chronic lymphocytic leukemia: analysis of NF-kappa B/Rel-regulated inhibitors of apoptosis", Blood, 100, 3749— 3756.
  • Ramalingam, P., Chu, W.S., Tubbs, R., Rybicici, L., Pettay, J. and Hsi, E.D. (2003) "Latent membrane protein 1, tumor necrosis factor receptor-associated factor (TRAF) 1, TRAF-2, TRAF-3, and nuclear factor kappa B expression in posttransplantation lymphoproliferative disorders", Arch. PathoL Lab. Med., 127, 1335 — 1339.
  • Wilson, J.B., Bell, J.L. and Levine, A.J. (1996) "Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice", EMBO J., 15, 3117 — 3126.
  • Peng, J., Schwartz, D., Elias, J.E., Thoreen, C.C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S.P. (2003) "A proteomics approach to understanding protein ubiquitination", Nat. BiotechnoL, 21, 921–926.
  • Zeldis, J.B., Schafer, PH., Bennett, B.L., Mercurio, F. and Stirling, D.I. (2003) "Potential new therapeutics for Waldenstrom's macroglobulinemia", Semin. OncoL, 30, 275–28!.
  • Meng, W., Sawasdikosol, S., Burakoff, Si. and Eck, M.J. (1999) "Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 lcinase", Nature, 398, 84–90.
  • Nakamura, M., Matsuo, T., Stauffer, J., Neckers, L. and Thiele, C.J. (2003) "Retinoic acid decreases targeting of p27 for degradation via an N-myc-dependent decrease in p27 phosphor-ylation and an N-myc-independent decrease in Skp2", Cell Death Differ., 10, 230–239.
  • Honda, R., Tanaka, H. and Yasuda, H. (1997) "Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53", FEBS Lett., 420, 25–27.
  • Jin, Y., Lee, H., Zeng, S.X., Dai, M.S. and Lu, H. (2003) "MDM2 promotes p21(wafl/cip 1) proteasomal turnover independently of ubiquitylation", EMBO J., 22, 6365–6377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.