349
Views
28
CrossRef citations to date
0
Altmetric
Original

Mutant FLT3 signaling contributes to a block in myeloid differentiation

& , MD, PhD
Pages 1679-1687 | Received 02 Jul 2005, Published online: 01 Jul 2009

References

  • Minden M. Growth factor requirements for normal and leukemic cells. Seminars in Hematology 1995; 32: 162–182
  • Rosnet O, Birnbaum D. Hematopoietic receptors of class III receptor-type tyrosine kinases. Critical Reviews in Oncology/Hematology 1993; 4: 595–613
  • Agnes F, Shamoon B, Dina C, Rosnet O, Birnbaum D, Galibert F. Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. Gene 1994; 145: 283–288
  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918
  • Rosnet O, Marchetto S, DeLapeyriere O, Brinbaum D. Murine FLT3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 1991; 6: 1641–1650
  • Matthews W, Jordan C T, Wiegand G W, Pardoll D, Lemischka I R. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 1991; 65: 1143–1152
  • Small D, Levenstein M, Kim E, Burrow C, Amin S, Civin C. STK-1 is expressed in a subpopulation of human bone marrow enriched for CD34 + progenitor/stem cells and in a number of leukemic cell lines. Blood 1992; 80: 296a
  • Rosnet O, Schiff C, Pebusque M J, Marchetto S, Tonnelle C, Toiron Y, et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 1993; 82: 1110–1119
  • Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, et al. STK-1, the human homolog of Flk2/Flt-3, is selectively expressed in CD34 + human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proceedings of the National Academy of Sciences (USA) 1994; 91: 459–463
  • Lyman S D. Biology of flt3 ligand and receptor. International Journal of Hematology 1995; 62: 63–73
  • McKenna H J. Role of hematopoietic growth factors/flt3 ligand in expansion and regulation of dendritic cells. Current Opinion in Hematology 2001; 8: 149–154
  • Maroc N, Rottapel R, Rosnet O, Marchetto S, Lavezzi C, Mannoni P, et al. Biochemical characterization and analysis of the transforming potential of the FLT3/FLK2 receptor tyrosine kinase. Oncogene 1993; 8: 909–918
  • deLapeyriere O, Naquet P, Planche J, Marchetto S, Rottapel R, Gambarelli D, et al. Expression of Flt3 tyrosine kinase receptor gene in mouse hematopoietic and nervous tissues. Differentiation 1995; 58: 351–359
  • Birg F, Courcoul M, Rosnet O, Bardin F, Pebusque M J, Marchetto S, et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood 1992; 80: 2584–2593
  • Drexler H G. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996; 10: 588–599
  • Carow C E, Levenstein M, Kaufmann S H, Chen J, Amin S, Rockwell P, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089–1096
  • Mackarehtschian K, Hardin J D, Moore K A, Boast S, Goff S P, Lemischka I R. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995; 3: 147–161
  • Lyman S D, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 1993; 75: 1157–1167
  • Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan J F, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994; 368: 643–648
  • McClanahan T, Culpepper J, Campbell D, Wagner J, Franz-Bacon K, Mattson J, et al. Biochemical and genetic characterization of multiple splice variants of the Flt3 ligand. Blood 1996; 88: 3371–3382
  • Lyman S D, Stocking K, Davison B, Fletcher F, Johnson L, Escobar S. Structural analysis of human and murine flt3 ligand genomic loci. Oncogene 1995; 11: 1165–1172
  • Lisovsky M, Braun S E, Ge Y, Takahira H, Lu L, Savchenko V G, Lyman S D, Broxmeyer H E. Flt3-ligand production by human bone marrow stromal cells. Leukemia 1996; 10: 1012–1018
  • McKenna H J, Stocking K L, Miller R E, Brasel K, De Smedt T, Maraskovsky E, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000; 95: 3489–3497
  • Meierhoff G, Dehmel U, Gruss H J, Rosnet O, Birnbaum D, Quentmeier H, et al. Expression of FLT3 receptor and FLT3-ligand in human leukemia-lymphoma cell lines. Leukemia 1995; 9: 1368–1372
  • Brasel K, Escobar S, Anderberg R, de Vries P, Gruss H J, Lyman S D. Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia 1995; 9: 1212–1218
  • Zheng R, Levis M, Piloto O, Brown P, Baldwin B R, Gorin N C, et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 2004; 103: 267–274
  • Lyman S D, Jacobsen S E. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 1998; 91: 1101–1134
  • Dosil M, Wang S, Lemischka I R. Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Molecular and Cellular Biology 1993; 13: 6572–6585
  • Rosnet O, Buhring H J, deLapeyriere O, Beslu N, Lavagna C, Marchetto S, et al. Expression and signal transduction of the FLT3 tyrosine kinse receptor. Acta Haematologica 1996; 95: 218–223
  • Zhang S, Broxmeyer H E. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochemical and Biophysical Research Communications 2000; 277: 195–199
  • Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. Journal of Experimental Medicine 2000; 192: 719–728
  • Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O. The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells. Journal of Biological Chemistry 1998; 273: 14962–14967
  • Tse K F, Mukherjee G, Small D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 2000; 14: 1766–1776
  • Zhang S MC, Broxmeyer H E. Flt3 signaling involves tyrosly-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. Journal of Leukocyte Biology 1999; 65: 372–380
  • Marchetto S, Fournier E, Beslu N, Aurran-Schleinitz T, Dubreuil P, Borg J P, et al. SHC and SHIP phosphorylation and interaction in response to activation of the FLT3 receptor. Leukemia 1999; 13: 1374–1382
  • Rottapel R, Turck C W, Casteran N, Liu X, Birnbaum D, Pawson T, Dubreuil P. Substrate specificities and identification of a putative binding site for PI3K in the carboxy tail of the murine Flt3 receptor tyrosine kinase. Oncogene 1994; 9: 1755–1765
  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439
  • Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, Naoe T. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337
  • Stirewalt D L, Kopecky K J, Meshinchi S, Appelbaum F R, Slovak M L, Willman C L, Radich J P. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595
  • Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 1999; 13: 38–43
  • Meshinchi S, Woods W G, Stirewalt D L, Sweetser D A, Buckley J D, Tjoa T K, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94
  • Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H, et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 1997; 11: 1442–1446
  • Xu F, Taki T, Yang H W, Hanada R, Hongo T, Ohnishi H, et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. British Journal of Haematology 1999; 105: 155–162
  • Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609
  • Baldwin B RZR, Small D. FLT3 is not frequently mutated in solid tumors. Blood 2001; 98: 156b
  • Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080
  • Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914
  • Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631
  • Chen P, Levis M, Brown P, Kim K T, Allebach J, Small D. FLT3/ITD mutation signaling includes suppression of SHP-1. Journal of Biological Chemistry 2005; 280: 5361–5369
  • Kim K T, Baird K, Ahn J Y, Meltzer P, Lilly M, Levis M, Small D. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 2005; 105: 1759–1767
  • Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173
  • Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563
  • Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Molecular Cell 2004; 13: 169–178
  • Levis M, Allebach J, Tse K F, Zheng R, Baldwin B R, Smith B D, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99: 3885–3891
  • Kelly L M, Liu Q, Kutok J L, Williams I R, Boulton C L, Gilliland D G. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318
  • Kelly L M, Kutok J L, Williams I R, Boulton C L, Amaral S M, Curley D P, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proceeding of the National Academy of Sciences (USA) 2002; 99: 8283–8288
  • Abu-Duhier F M, Goodeve A C, Wilson G A, Care R S, Peake I R, Reilly J T. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. British Journal of Haematology 2001; 113: 983–988
  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335
  • Armstrong S A, Kung A L, Mabon M E, Silverman L B, Stam R W, Den Boer M L, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183
  • Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004; 103: 1085–1088
  • Smith M L, Arch R, Smith L L, Bainton N, Neat M, Taylor C, et al. Development of a human acute myeloid leukaemia screening panel and consequent identification of novel gene mutation in FLT3 and CCND3. British Journal of Haematology 2005; 128: 318–323
  • Jiang J, Paez J G, Lee J C, Bo R, Stone R M, DeAngelo D J, et al. Identifying and characterizing a novel activating mutation of the FLT3 tyrosine kinase in AML. Blood 2004; 104: 1855–1858
  • Grundler R, Miething C, Thiede C, Peschel C, Duyster J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799
  • Armstrong S A, Mabon M E, Silverman L B, Li A, Gribben J G, Fox E A, et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 2004; 103: 3544–3546
  • Valtieri M, Tweardy D J, Caracciolo D, Johnson K, Mavilio F, Altmann S, et al. Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. Journal of Immunology 1987; 138: 3829–3835
  • Zheng R, Friedman A D, Small D. Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dcl3 cells caused by expression of FLT3/ITD mutations. Blood 2002; 100: 4154–4161
  • Baldwin B R, Tse K -F, Small D. Transgenic mice expressing a constitutively activated FLT3 receptor display a myeloproliferative disease phenotype. Blood 2001; 98: 801a
  • Fagioli M, Grignani F, Ferrucci P F, Alcalay M, Mencarelli A, Nicoletti I, et al. Effect of the acute promyelocytic leukemia PML/RAR alpha protein on differentiation and survival of myeloid precursors. Leukemia 1994; 8(Suppl 1)S7–S11
  • He L Z, Tribioli C, Rivi R, Peruzzi D, Pelicci P G, Soares V, et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proceedings of the National Academy of Sciences (USA) 1997; 94: 5302–5307
  • Zheng R, Friedman A D, Levis M, Li L, Weir E G, Small D. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 2004; 103: 1883–1890
  • Schwable J, Choudhary C, Thiede C, Tickenbrock L, Sargin B, Steur C, et al. RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation. Blood 2005; 105: 2107–2114
  • Tse K, Novelli E, Civin C, Bohmer F, Small D. Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia 2001; 15: 1001–1010
  • Tse K F, Allebach J, Levis M, Smith B D, Bohmer F D, Small D. Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor. Leukemia 2002; 16: 2027–2036
  • Levis M, Tse K F, Smith B D, Garrett E, Small D. A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood 2001; 98: 885–887
  • Mendel D B, Laird A D, Xin X, Louie S G, Christensen J G, Li G, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Research 2003; 9: 327–337
  • O'Farrell A M, Abrams T J, Yuen H A, Ngai T J, Louie S G, Yee K W, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003; 101: 3597–3605
  • Kelly L M, Yu J C, Boulton C L, Apatira M, Li J, Sullivan C M, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1: 421–432
  • Weisberg E, Boulton C, Kelly L M, Manley P, Fabbro D, Meyer T, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443
  • Huang M E, Ye Y C, Chen S R, Chai J R, Lu J X, Zhoa L, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572
  • Castaigne S, Chomienne C, Daniel M T, Ballerini P, Berger R, Fenaux P, Degos L. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 1990; 76: 1704–1709
  • Warrell R P, Jr, Frankel S R, Miller W H, Jr, Scheinberg D A, Itri L M, Hittelman W N, et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). New England Journal of Medicine 1991; 324: 1385–1393
  • Fenaux P, Chastang C, Degos L. Treatment of newly diagnosed acute promyelocytic leukemia (APL) by a combination of all-trans retinoic acid (ATRA) and chemotherapy. French APL Group. Leukemia 1994; 8(Suppl 2)S42–S47
  • Sanz M A, Lo Coco F, Martin G, Avvisati G, Rayon C, Barbui T, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 2000; 96: 1247–1253
  • Niu C, Yan H, Yu T, Sun H P, Liu J X, Li X S, et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 1999; 94: 3315–3324
  • Shen Z X, Chen G Q, Ni J H, Li X S, Xiong S M, Qiu Q Y, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89: 3354–3360
  • Chen G Q, Zhu J, Shi X G, Ni J H, Zhong H J, Si G Y, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 1996; 88: 1052–1061
  • Shao W, Fanelli M, Ferrara F F, Riccioni R, Rosenauer A, Davison K, et al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. Journal of the National Cancer Institute 1998; 90: 124–133
  • Wang Z G, Rivi R, Delva L, Konig A, Scheinberg D A, Gambacorti-Passerini C, et al. Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARalpha independent manner. Blood 1998; 92: 1497–1504
  • Levis M, Pham R, Smith B D, Small D, Gabrilove J L, Warrell R P, Jr, Pandolfi P P. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 2004; 104: 1145–1150

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.