348
Views
21
CrossRef citations to date
0
Altmetric
Original

Transcription factor GATA-1 and Down syndrome leukemogenesis

, , &
Pages 986-997 | Accepted 04 Nov 2005, Published online: 01 Jul 2009

References

  • Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia 2003; 17: 1738–1752
  • Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood 2005; 105: 4187–4190
  • Daser A, Rabbitts T H. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev 2004; 18: 965–974
  • Song W J, Sullivan M G, Legare R D, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175
  • Wechsler J, Greene M, McDevitt M A, Anastasi J, Karp J E, Le Beau M M, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002; 32: 148–152
  • Groet J, McElwaine S, Spinelli M, Rinaldi A, Burtscher I, Mulligan C, et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 2003; 361: 1617–1620
  • Hitzler J K, Cheung J, Li Y, Scherer S W, Zipursky A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 2003; 101: 4301–4304
  • Mundschau G, Gurbuxani S, Gamis A S, Greene M E, Arceci R J, Crispino J D. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 2003; 101: 4298–4300
  • Rainis L, Bercovch D, Strehl S, Teigler-Schlegel A, Stark B, Trka J, et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 2003; 102: 981–986
  • Xu G, Nagano M, Kanezaki R, Toki T, Hayashi Y, Taketani T, et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood 2003; 102: 2960–2968
  • Ahmed M, Sternberg A, Hall G, Thomas A, Smith O, O'Marcaigh A, et al. Natural history of GATA1 mutations in Down syndrome. Blood 2004; 103: 2480–2489
  • Tsai S F, Martin D I, Zon L I, D'Andrea A D, Wong G G, Orkin S H. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989; 339: 446–451
  • Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 1989; 58: 877–885
  • Martin D I, Orkin S H. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev 1990; 4: 1886–1898
  • Trainor C D, Omichinski J G, Vandergon T L, Gronenborn A M, Clore G M, Felsenfeld G. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol 1996; 16: 2238–2247
  • Newton A, Mackay J, Crossley M. The N-terminal zinc finger of the erythroid transcription factor GATA-1 binds GATC motifs in DNA. J Biol Chem 2001; 276: 35794–35801
  • Tsang A P, Visvader J E, Turner C A, Fujiwara Y, Yu C, Weiss M J, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 1997; 90: 109–119
  • Welch J J, Watts J A, Vakoc C R, Yao Y, Wang H, Hardison R C, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 2004; 104: 3136–3147
  • Pevny L, Simon M C, Robertson E, Klein W H, Tsai S F, D'Agati V, et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 1991; 349: 257–260
  • Simon M C, Pevny L, Wiles M V, Keller G, Costantini F, Orkin S H. Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet 1992; 1: 92–98
  • Weiss M J, Keller G, Orkin S H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 1994; 8: 1184–1197
  • Fujiwara Y, Browne C P, Cunniff K, Goff S C, Orkin S H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 1996; 93: 12355–12358
  • Terajima M, Nemoto Y, Obinata M. Inducible expression of erythroid-specific mouse glycophorin gene is regulated by proximal elements and locus control region-like sequence. J Biochem (Tokyo) 1995; 118: 593–600
  • Minie M, Clark D, Trainor C, Evans T, Reitman M, Hannon R, et al. Developmental regulation of globin gene expression. J Cell Sci Suppl 1992; 16: 15–20
  • Gregory T, Yu C, Ma A, Orkin S H, Blobel G A, Weiss M J. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 1999; 94: 87–96
  • Rylski M, Welch J J, Chen Y Y, Letting D L, Diehl J A, Chodosh L A, et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 2003; 23: 5031–5042
  • Zon L I, Youssoufian H, Mather C, Lodish H F, Orkin S H. Activation of the erythropoietin receptor promoter by transcription factor GATA-1. Proc Natl Acad Sci USA 1991; 88: 10638–10641
  • Munugalavadla V, Dore L C, Tan B L, Hong L, Vishnu M, Weiss M J, et al. Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 2005; 25: 6747–6759
  • McDevitt M A, Shivdasani R A, Fujiwara Y, Yang H, Orkin S H. A ‘knockdown’ mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci USA 1997; 94: 6781–6785
  • Takahashi S, Onodera K, Motohashi H, Suwabe N, Hayashi N, Yanai N, et al. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem 1997; 272: 12611–12615
  • Pan X, Ohneda O, Ohneda K, Lindeboom F, Iwata F, Shimizu R, et al. Graded levels of GATA-1 expression modulate survival, proliferation, and differentiation of erythroid progenitors. J Biol Chem 2005; 280: 22385–22394
  • Shimizu R, Kuroha T, Ohneda O, Pan X, Ohneda K, Takahashi S, et al. Leukemogenesis caused by incapacitated GATA-1 function. Mol Cell Biol 2004; 24: 10814–10825
  • Rosenbauer F, Wagner K, Kutok J L, Iwasaki H, Le Beau M M, Okuno Y, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630
  • Cook W D, McCaw B J, Herring C, John D L, Foote S J, Nutt S L, et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 2004; 104: 3437–3444
  • Rosenbauer F, Koschmieder S, Steidl U, Tenen D G. Effect of transcription-factor concentrations on leukemic stem cells. Blood 2005; 106: 1519–1524
  • Visvader J E, Elefanty A G, Strasser A, Adams J M. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J 1992; 11: 4557–4564
  • Visvader J, Adams J M. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood 1993; 82: 1493–1501
  • Pevny L, Lin C S, D'Agati V, Simon M C, Orkin S H, Costantini F. Development of hematopoietic cells lacking transcription factor GATA = 1. Development 1995; 121: 163–172
  • Shivdasani R A, Fujiwara Y, McDevitt M A, Orkin S H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 1997; 16: 3965–3973
  • Vyas P, Ault K, Jackson C W, Orkin S H, Shivdasani R A. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 1999; 93: 2867–2875
  • Muntean A G, Crispino J D. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood 2005; 106: 1223–1231
  • Stachura D L, Chou S T, Weiss M J. An early block to erythro-megakaryocytic development conferred by loss of transcription factor GATA-1. Blood 2006; 107: 87–97
  • Nichols K E, Crispino J D, Poncz M, White J G, Orkin S H, Maris J M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000; 24: 266–270
  • Mehaffey M G, Newton A L, Gandhi M J, Crossley M, Drachman J G. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 2001; 98: 2681–2688
  • Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001; 98: 85–92
  • Freson K, Matthijs G, Thys C, Marien P, Hoylaerts M F, Vermylen J, et al. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 2002; 11: 147–152
  • Yu C, Niakan K K, Matsushita M, Stamatoyannopoulos G, Orkin S H, Raskind W H. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002; 100: 2040–2045
  • Balduini C L, Pecci A, Loffredo G, Izzo P, Noris P, Grosso M, et al. Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost 2004; 91: 129–140
  • Del Vecchio G C, Giordani L, De Santis A, De Mattia D. Dyserythropoietic anemia and thrombocytopenia due to a novel mutation in GATA-1. Acta Haematol 2005; 114: 113–116
  • Calligaris R, Bottardi S, Cogoi S, Apezteguia I, Santoro C. Alternative translation initiation site usage results in two functionally distinct forms of the GATA-1 transcription factor. Proc Natl Acad Sci USA 1995; 92: 11598–11602
  • Crispino J D. GATA1 in normal and malignant hematopoiesis. Semin Cell Dev Biol 2005; 16: 137–147
  • Zipursky A, Poon A, Doyle J. Leukemia in Down syndrome: a review. Pediatr Hematol Oncol 1992; 9: 139–149
  • Zipursky A. Transient leukaemia – a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol 2003; 120: 930–938
  • Zipursky A, Rose T, Skidmore M, Thorner P, Doyle J. Hydrops fetalis and neonatal leukemia in Down syndrome. Pediatr Hematol Oncol 1996; 13: 81–87
  • Gamis A S, Hilden J M. Transient myeloproliferative disorder, a disorder with too few data and many unanswered questions: does it contain an important piece of the puzzle to understanding hematopoiesis and acute myelogenous leukemia. J Pediatr Hematol Oncol 2002; 24: 2–5
  • Taub J W. Relationship of chromosome 21 and acute leukemia in children with Down syndrome. J Pediatr Hematol Oncol 2001; 23: 175–178
  • Lange B. The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol 2000; 110: 512–524
  • Yang H Y, Evans T. Distinct roles for the two cGATA-1 finger domains. Mol Cell Biol 1992; 12: 4562–4570
  • Visvader J E, Crossley M, Hill J, Orkin S H, Adams J M. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol 1995; 15: 634–641
  • Blobel G A, Simon M C, Orkin S H. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol Cell Biol 1995; 15: 626–633
  • Weiss M J, Yu C, Orkin S H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol 1997; 17: 1642–1651
  • Shimizu R, Takahashi S, Ohneda K, Engel J D, Yamamoto M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J 2001; 20: 5250–5260
  • Hitzler J K, Zipursky A. Origins of leukaemia in children with Down syndrome. Nat Rev Cancer 2005; 5: 11–20
  • Kuhl C, Atzberger A, Iborra F, Nieswandt B, Porcher C, Vyas P. GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1. Mol Cell Biol 2005; 25: 8592–8606
  • Li Z, Godinho F J, Klusmann J H, Garriga-Canut M, Yu C, Orkin S H. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 2005; 37: 613–619
  • Grass J A, Boyer M E, Pal S, Wu J, Weiss M J, Bresnick E H. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA 2003; 100: 8811–8816
  • Letting D L, Chen Y Y, Rakowski C, Reedy S, Blobel G A. Context-dependent regulation of GATA-1 by friend of GATA-1. Proc Natl Acad Sci USA 2004; 101: 476–481
  • Pal S, Cantor A B, Johnson K D, Moran T B, Boyer M E, Orkin S H, et al. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci USA 2004; 101: 980–985
  • Ikonomi P, Rivera C E, Riordan M, Washington G, Schechter A N, Noguchi C T. Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Exp Hematol 2000; 28: 1423–1431
  • Creutzig U, Reinhardt D, Diekamp S, Dworzak M, Stary J, Zimmermann M. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 2005; 19: 1355–1360
  • Zipursky A, Thorner P, De Harven E, Christensen H, Doyle J. Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk Res 1994; 18: 163–171
  • Ravindranath Y, Abella E, Krischer J P, Wiley J, Inoue S, Harris M, et al. Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood 1992; 80: 2210–2214
  • Ravindranath Y, Yeager A M, Chang M N, et al. Autologous bone marrow transplantation versus intensive consolidation chemotherapy for acute myeloid leukemia in childhood. Pediatric Oncology Group. N Engl J Med 1996; 334: 1428–1434
  • Lange B J, Kobrinsky N, Barnard D R, Arthur D C, Buckley J D, Howells W B, et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood 1998; 91: 608–615
  • Gamis A S, Woods W G, Alonzo T A, Buxton A, Lange B, Barnard D R, et al. Increased age at diagnosis has a significantly negative effect on outcome in children with Down syndrome and acute myeloid leukemia: a report from the Children's Cancer Group Study 2891. J Clin Oncol 2003; 21: 3415–3422
  • Zeller B, Gustafsson G, Forestier E, Abrahamsson J, Clausen N, Heldrup J, et al. Acute leukaemia in children with Down syndrome: a population-based Nordic study. Br J Haematol 2005; 128: 797–804
  • Kojima S, Sako M, Kato K, Hosoi G, Sato T, Ohara A, et al. An effective chemotherapeutic regimen for acute myeloid leukemia and myelodysplastic syndrome in children with Down's syndrome. Leukemia 2000; 14: 786–791
  • Athale U H, Razzouk B I, Raimondi S C, Tong X, Behm F G, Head D R, et al. Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood 2001; 97: 3727–3732
  • Taub J W, Huang X, Matherly L H, Stout M L, Buck S A, Massey G V, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood 1999; 94: 1393–1400
  • Taub J W, Ge Y. Down syndrome, drug metabolism and chromosome 21. Pediatr Blood Cancer 2005; 44: 33–39
  • Ge Y, Stout M L, Tatman D A, Jensen T L, Buck S, Thomas R L, et al. GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia. J Natl Cancer Inst 2005; 97: 226–231
  • Frost B M, Gustafsson G, Larsson R, Nygren P, Lonnerholm G. Cellular cytotoxic drug sensitivity in children with acute leukemia and Down's syndrome: an explanation to differences in clinical outcome. Leukemia 2000; 14: 943–944
  • Zwaan C M, Kaspers G J, Pieters R, Hahlen K, Janka-Schaub G E, van Zantwijk C H, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood 2002; 99: 245–251
  • Ge Y, Jensen T L, Matherly L H, Taub J W. Transcriptional regulation of the cystathionine-beta -synthase gene in Down syndrome and non – Down syndrome megakaryocytic leukemia cell lines. Blood 2003; 101: 1551–1557
  • Whitlock J A, Sather H N, Gaynon P, Robison L L, Wells R J, Trigg M, et al. Clinical characteristics and outcome of children with down syndrome and acute lymphoblastic leukemia: a children's cancer group study. Blood 2005; 106: 4043–4049
  • Shimamoto T, Ohyashiki K, Ohyashiki J H, Kawakubo K, Fujimura T, Iwama H, et al. The expression pattern of erythrocyte/megakaryocyte-related transcription factors GATA-1 and the stem cell leukemia gene correlates with hematopoietic differentiation and is associated with outcome of acute myeloid leukemia. Blood 1995; 86: 3173–3180
  • Ge Y, Jensen T L, Stout M L, Flatley R M, Grohar P J, Ravindranath Y, et al. The role of cytidine deaminase and GATA1 mutations in the increased cytosine arabinoside sensitivity of Down syndrome myeloblasts and leukemia cell lines. Cancer Res 2004; 64: 728–735
  • Galmarini C M, Mackey J R, Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001; 15: 875–890
  • Ge Y, Dombkowski A A, Lafiura K M, Tatman D, Yedidi R S, Stout M L, et al. Differential gene expression, GATA1 target genes and the chemotherapy sensitivity of down syndrome megakaryocytic leukemia. Blood 2005, prepublished online; DOI 10.1182/blood-2005-06-2219
  • Ishikawa J, Kaisho T, Tomizawa H, Lee B O, Kobune Y, Inazawa J, et al. Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth. Genomics 1995; 26: 527–534
  • Ohtomo T, Sugamata Y, Ozaki Y, Ono K, Yoshimura Y, Kawai S, et al. Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells. Biochem Biophys Res Commun 1999; 258: 583–591

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.