454
Views
34
CrossRef citations to date
0
Altmetric
Original

PIG-A mutations in paroxysmal nocturnal hemoglobinuria and in normal hematopoiesis

, MD &
Pages 1215-1221 | Received 30 Dec 2005, Published online: 01 Jul 2009

References

  • Brodsky R A. Paroxysmal nocturnal hemoglobinuria. Hematology: Basic principles and practice4th ed, R Hoffman, E J Benz, Jr, S J Shattil, B Furie, H J Cohen, L E Silberstein, P McGlave. Elsevier Churchill Livingstone, Philadelphia 2005; 419–427
  • Moyo V M, Mukhina G L, Garrett E S, Brodsky R A. Natural history of paroxysmal nocturnal hemoglobinuria using modern diagnostic assays. Br J Haematol 2004; 126: 133–138
  • Socie G, Mary J Y, de Gramont A, Rio B, Leporrier M, Rose C, et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. French Society of Haematology. Lancet 1996; 348: 573–577
  • Hillmen P, Lewis S M, Bessler M, Luzzatto L, Dacie J V. Natural history of paroxysmal nocturnal hemoglobinuria. N Eng J Med 1995; 333: 1253–1258
  • Nagarajan S, Brodsky R A, Young N S, Medof M E. Genetic defects underlying paroxysmal nocturnal hemoglobinuria that arises out of aplastic anemia. Blood 1995; 86: 4656–4661
  • Tichelli A, Gratwohl A, Nissen C, Speck B. Late clonal complications in severe aplastic anemia. Leukemia & Lymphoma 1994; 12: 167–175
  • Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, et al. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science 1993; 259: 1318–1320
  • Miyata T, Yamada N, Iida Y, Nishimura J, Takeda J, Kitani T, et al. Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N Eng J Med 1994; 330: 249–255
  • Bessler M, Mason P J, Hillmen P, Miyata T, Yamada N, Takeda J, et al. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO Journal 1994; 13: 110–117
  • Araten D J, Nafa K, Pakdeesuwan K, Luzzatto L. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proceedings of the National Academy of Sciences (USA) 1999; 96: 5209–5214
  • Hertenstein B, Wagner B, Bunjes D, Duncker C, Raghavachar A, Arnold R, et al. Emergence of CD52−, phosphatidylinositolglycan-anchor-deficient T lymphocytes after in vivo application of campath-1H for refractory B-cell non-Hodgkin lymphoma. Blood 1995; 86: 1487–1492
  • Rawstron A C, Rollinson S J, Richards S, Short M A, English A, Morgan G J, et al. The PNH phenotype cells that emerge in most patients after CAMPATH-1H therapy are present prior to treatment. Br J Haematol 1999; 107: 148–153
  • Ware R E, Pickens C V, DeCastro C M, Howard T A. Circulating PIG-A mutant T lymphocytes in healthy adults and patients with bone marrow failure syndromes. Experimental Hematology 2001; 29: 1403–1409
  • Hu R, Mukhina G L, Piantadosi S, Barber J P, Jones R J, Brodsky R A. PIG-A mutations in normal hematopoiesis. Blood 2005; 105: 3848–3854
  • Inoue N, Watanabe R, Takeda J, Kinoshita T. PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochemistry & Biophysics Research Communications 1996; 226: 193–199
  • Kamitani T, Chang H M, Rollins C, Waneck G L, Yeh E T. Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk-cells by a human cDNA clone. J Biol Chem 1993; 268: 20733–20736
  • Tiede A, Schubert J, Nischan C, Jensen I, Westfall B, Taron C H, et al. Human and mouse Gpi1p homologues restore glycosylphosphatidylinositol membrane anchor biosynthesis in yeast mutants. Biochem J 1998; 334: 609–616
  • Watanabe R, Inoue N, Westfall B, Taron C H, Orlean P, Takeda J, et al. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J 1998; 17: 877–885
  • Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Molecular Biology of the Cell 2005; 16: 5236–5246
  • Watanabe R, Murakami Y, Marmor M D, Inoue N, Maeda Y, Hino J, et al. Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J 2000; 19: 4402–4411
  • Watanabe R, Ohishi K, Maeda Y, Nakamura N, Kinoshita T. Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J 1999; 339: 185–192
  • Stevens V L. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J 1995; 310: 361–370
  • Ferguson M A, Williams A F. Cell-surface anchoring of proteins via glycosylphosphatidylinositol structures. Annual Reviews in Biochemistry 1988; 57: 285–320
  • Kinoshita T, Inoue N. Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis. Current Opinions in Chemical Biology 2000; 4: 632–638
  • Devine D V, Gluck W L, Rosse W F, Weinberg J B. Acute myeloblastic leukemia in paroxysmal nocturnal hemoglobinuria. J Clin Invest 1987; 79: 314–317
  • Graham D L, Gastineau D A. Paroxysmal nocturnal hemoglobinuria as a marker for clonal myelopathy. Am J Med 1992; 93: 671–674
  • Longo L, Bessler M, Beris P, Swirsky D, Luzzatto L. Myelodysplasia in a patient with pre-existing paroxysmal nocturnal haemoglobinuria: a clonal disease orginating from within a clonal disease. Br J Haematol 1994; 87: 401–403
  • Araten D J, Swirsky D, Karadimitris A, Notaro R, Nafa K, Bessler M, et al. Cytogenetic and morphological abnormalities in paroxysmal nocturnal haemoglobinuria. Br J Haematol 2001; 115: 360–368
  • Rosse W F. Paroxysmal nocturnal hemoglobinuria as a molecular disease. Medicine 1997; 76: 63–93
  • Hall S E, Rosse W F. The use of monoclonal antibodies and flow cytometry in the diagnosis of paroxysmal nocturnal hemoglobinuria. Blood 1996; 87: 5332–5340
  • Wilcox L A, Ezzell J L, Bernshaw N J, Parker C J. Molecular basis of the enhanced susceptibility of the erythrocytes of paroxysmal nocturnal hemoglobinuria to hemolysis in acidified serum. Blood 1991; 78: 820–829
  • Medof M E, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984; 160: 1558–1578
  • Hillmen P, Hall C, Marsh J C, Elebute M, Bombara M P, Petro B E, et al. Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N Eng J Med 2004; 350: 552–559
  • Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, Fujita T, et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 1993; 73: 703–711
  • Nafa K, Mason P J, Hillmen P, Luzzatto L, Bessler M. Mutations in the PIG-A gene causing paroxysmal nocturnal hemoglobinuria are mainly of the frameshift type. Blood 1995; 86: 4650–4655
  • Johnson R J, Hillmen P. Paroxysmal nocturnal haemoglobinuria: nature's gene therapy. Mole Pathol 2002; 55: 145–152
  • Bessler M, Hillmen P, Longo L, Luzzatto L, Mason P J. Genomic organization of the X-linked gene (PIG-A) that is mutated in paroxysmal nocturnal haemoglobinuria and of a related autosomal pseudogene mapped to 12q21. Human Mole Genet 1994; 3: 751–757
  • Nagarajan S, Brown C J, Medof M E. Identification of a PIG-A related processed gene on chromosome 12. Human Genetics 1995; 95: 691–697
  • Gerritsen W R, Donohue J, Bauman J, Jhanwar S C, Kernan N A, Castro-Malaspina H, et al. Clonal analysis of myelodysplastic syndrome: Monosomy 7 is expressed in the myeloid lineage, but not in the lymphoid lineage as detected by fluorescent in situ hybridization. Blood 1992; 80: 217–224
  • Baurmann H, Cherif D, Berger R. Interphase cytogenetics by fluorescent in situ hybridization (FISH) for characterization of monosomy-7-associated myeloid disorders. Leukemia 1993; 7: 384–391
  • Fialkow P J, Jacobson R J, Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977; 63: 125
  • Brodsky R A, Mukhina G L, Nelson K L, Lawrence T S, Jones R J, Buckley J T. Resistance of paroxysmal nocturnal hemoglobinuria cells to the glycosylphosphatidylinositol-binding toxin aerolysin. Blood 1999; 93: 1749–1756
  • Brodsky R A, Mukhina G L, Li S, Nelson K L, Chiurazzi P L, Buckley J T, et al. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using fluorescent aerolysin. Am J Clin Pathol 2000; 114: 459–466
  • Mukhina G L, Buckley J T, Barber J P, Jones R J, Brodsky R A. Multilineage glycosylphosphatidylinositol anchor deficient hematopoiesis in untreated aplastic anemia. Br J Haematol 2001; 115: 476–482
  • Howard S P, Buckley J T. Activation of the hole-forming toxin aerolysin by extracellular processing. J Bacteriol 1985; 163: 336–340
  • Schubert J, Vogt H G, Zielinska-Skowronek M, Freund M, Kaltwasser J P, Hoelzer D, et al. Development of the glycosylphosphatitylinositol-anchoring defect characteristic for paroxysmal nocturnal hemoglobinuria in patients with aplastic anemia. Blood 1994; 83: 2323–2328
  • Dunn D E, Tanawattanacharoen P, Boccuni P, Nagakura S, Green S W, Kirby M R, et al. Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes. Ann Inter Med 1999; 131: 401–408
  • Wang H, Chuhjo T, Yasue S, Omine M, Nakao S. Clinical significance of a minor population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow failure syndrome. Blood 2002; 100: 3897–3902
  • Iwanaga M, Furukawa K, Amenomori T, Mori H, Nakamura H, Fuchigami K, et al. Paroxysmal nocturnal haemoglobinuria clones in patients with myelodysplastic syndromes. Br J Haematol 1998; 102: 465–474
  • Sugimori C, Chuhjo T, Feng X, Yamazaki H, Takami A, Teramura M, et al. Minor population of CD55-CD59-blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood 2006; 107: 1308–1314
  • Matsui W H, Brodsky R A, Smith B D, Borowitz M J, Jones R J. Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes. Leukemia 2006; 20: 458–462
  • Taylor V C, Sims M, Brett S, Field M C. Antibody selection against CD52 produces a paroxysmal nocturnal haemoglobinuria phenotype in human lymphocytes by a novel mechanism. Biochem J 1997; 322: 919–925
  • Garland R J, Groves S J, Diamanti P, West S E, Winship K L, Virgo P F, et al. Early emergence of PNH-like T cells after allogeneic stem cell transplants utilising CAMPATH-1H for T cell depletion. Bone Marrow Transplant 2005; 36: 237–244
  • Endo M, Ware R E, Vreeke T M, Singh S P, Howard T A, Tomita A, et al. Molecular basis of the heterogeneity of expression of glycosyl phosphatidylinositol anchored proteins in paroxysmal nocturnal hemoglobinuria. Blood 1996; 87: 2546–2557
  • Noji H, Shichishima T, Saitoh Y, Kai T, Yamamoto T, Ogawa K, et al. The distribution of PIG-A gene abnormalities in paroxysmal nocturnal hemoglobinuria granulocytes and cultured erythroblasts. Experimental Hematology 2001; 29: 391–400
  • Nouspikel T, Hanawalt P C. DNA repair in terminally differentiated cells. DNA Repair (Amsterdam) 2002; 1: 59–75
  • Biernaux C, Sels A, Huez G, Stryckmans P. Very low level of major BCR-ABL expression in blood of some healthy individuals. Bone Marrow Transplant 1996; 17(Suppl 3)S45–S47
  • Limpens J, de Jong D, van Krieken J H, Price C G, Young B D, van Ommen G J, Kluin P M. Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 1991; 6: 2271–2276
  • Gurbuxani S, Vyas P, Crispino J D. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 2004; 103: 399–406

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.