506
Views
73
CrossRef citations to date
0
Altmetric
Original

Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma

, , &
Pages 2289-2300 | Accepted 16 May 2006, Published online: 01 Jul 2009

References

  • Lai J L, Zandecki M, Mary J Y, Bernardi F, Izydorczyk V, Flactif M, et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood 1995; 85: 2490–2497
  • Taniwaki M, Nishida K, Ueda Y, Takashima T. Non-random chromosomal rearrangements and their implications in clinical features and outcome of multiple myeloma and plasma cell leukemia. Leuk Lymphoma 1996; 21: 25–30
  • Sawyer J R, Waldron J A, Jagannath S, Barlogie B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet 1995; 82: 41–49
  • Bergsagel P L, Chesi M, Nardini E, Brents L A, Kirby S L, Kuehl W M. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996; 93: 13931–13936
  • Chesi M, Nardini E, Brents L A, Schrock E, Ried T, Kuehl W M, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260–264
  • Passos-Bueno M R, Wilcox W R, Jabs E W, Sertie A L, Alonso L G, Kitoh H. Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat 1999; 14: 115–125
  • Richelda R, Ronchetti D, Baldini L, Cro L, Viggiano L, Marzella R, et al. A novel chromosomal translocation t(4;14)(p16.3;q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. Blood 1997; 90: 4062–4070
  • Fonseca R, Blood E, Rue M, Harrington D, Oken M M, Kyle R A, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101: 4569–4575
  • Fenton J A, Pratt G, Rawstron A C, Sibley K, Rothwell D, Yates Z, et al. Genomic characterization of the chromosomal breakpoints of t(4;14) of multiple myeloma suggests more than one possible aetiological mechanism. Oncogene 2003; 22: 1103–1113
  • Stec I, Wright T J, van Ommen G J, de Boer P A, van Haeringen A, Moorman A F, et al. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf – Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet 1998; 7: 1071–1082
  • Chesi M, Nardini E, Lim R S, Smith K D, Kuehl W M, Bergsagel P L. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92: 3025–3034
  • Still I H, Vince P, Cowell J K. The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics 1999; 58: 165–170
  • Keats J J, Reiman T, Maxwell C A, Taylor B J, Larratt L M, Mant M J, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101: 1520–1529
  • Chesi M, Bergsagel P L, Shonukan O O, Martelli M L, Brents L A, Chen T, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998; 91: 4457–4463
  • Boersma-Vreugdenhil G R, Kuipers J, Van Stralen E, Peeters T, Michaux L, Hagemeijer A, et al. The recurrent translocation t(14;20)(q32;q12) in multiple myeloma results in aberrant expression of MAFB: a molecular and genetic analysis of the chromosomal breakpoint. Br J Haematol 2004; 126: 355–363
  • Smadja N V, Leroux D, Soulier J, Dumont S, Arnould C, Taviaux S, et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 2003; 38: 234–239
  • Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J, Jr. A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 2003; 101: 2374–2376
  • Chang H, Stewart A K, Qi X Y, Li Z H, Yi Q L, Trudel S. Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. Blood 2005; 106: 353–355
  • Jaksic W, Trudel S, Chang H, Trieu Y, Qi X, Mikhael J, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol 2005; 23: 7069–7073
  • Nakazawa N, Nishida K, Tamura A, Kobayashi M, Iwai T, Horiike S, et al. Interphase detection of t(4;14)(p16.3;q32.3) by in situ hybridization and FGFR3 overexpression in plasma cell malignancies. Cancer Genet Cytogenet 2000; 117: 89–96
  • Stewart J P, Thompson A, Santra M, Barlogie B, Lappin T R, Shaughnessy J, Jr. Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma. Br J Haematol 2004; 126: 72–76
  • Malgeri U, Baldini L, Perfetti V, Fabris S, Vignarelli M C, Colombo G, et al. Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by reverse transcription-polymerase chain reaction analysis of IGH-MMSET fusion transcripts. Cancer Res 2000; 60: 4058–4061
  • Soverini S, Terragna C, Testoni N, Ruggeri D, Tosi P, Zamagni E, et al. Novel mutation and RNA splice variant of fibroblast growth factor receptor 3 in multiple myeloma patients at diagnosis. Haematologica 2002; 87: 1036–1040
  • Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757
  • Munshi N C, Hideshima T, Carrasco D, Shammas M, Auclair D, Davies F, et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 2004; 103: 1799–1806
  • Fabris S, Agnelli L, Mattioli M, Baldini L, Ronchetti D, Morabito F, et al. Characterization of oncogene dysregulation in multiple myeloma by combined FISH and DNA microarray analyses. Genes Chromosomes Cancer 2005; 42: 117–127
  • Dring A M, Davies F E, Fenton J A, Roddam P L, Scott K, Gonzalez D, et al. A global expression-based analysis of the consequences of the t(4;14) translocation in myeloma. Clin Cancer Res 2004; 10: 5692–5701
  • Keats J J, Maxwell C A, Taylor B J, Hendzel M J, Chesi M, Bergsagel P L, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32) positive multiple myeloma patients. Blood 2005; 105: 4060–4069
  • Pilarski L M, Kaigala G V, VanDjiken J, Atrazhev A, Taylor B J, Belch A R, et al. Microfluidic devices for molecular monitoring of clonotypic IgH VDJ signatures and the t(4;14) translocation in mulitiple myeloma. Blood 2005; 106: A1536
  • Pilarski L M, Lauzon J, Strachan E, Adamia S, Atrazhev A, Belch A R, et al. Sensitive detection using microfluidics technology of single cell PCR products from high and low abundance IgH VDJ templates in multiple myeloma. J Immunol Meth 2005; 305: 94–105
  • Debes-Marun C S, Belch A R, Pilarski L M. Circulating B lymphocytes from patients with multiple myeloma harbour t(4;14) translocations and chromosome 13 deletions. Blood 2005; 106: A500
  • Avet-Loiseau H, Brigaudeau C, Morineau N, Talmant P, Lai J L, Daviet A, et al. High incidence of cryptic translocations involving the Ig heavy chain gene in multiple myeloma, as shown by fluorescence in situ hybridization. Genes Chromosomes Cancer 1999; 24: 9–15
  • Avet-Loiseau H, Facon T, Daviet A, Godon C, Rapp M J, Harousseau J L, et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res 1999; 59: 4546–4550
  • Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp M J, Harousseau J L, et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002; 99: 2185–2191
  • Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau J L, Bataille R. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 2001; 98: 3082–3086
  • Avet-Loiseau H, Li J Y, Facon T, Brigaudeau C, Morineau N, Maloisel F, et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res 1998; 58: 5640–5645
  • Chang H, Li D, Zhuang L, Nie E, Bouman D, Stewart A K, et al. Detection of chromosome 13q deletions and IgH translocations in patients with multiple myeloma by FISH: comparison with karyotype analysis. Leuk Lymphoma 2004; 45: 965–969
  • Chang H, Sloan S, Li D, Patterson B. Genomic aberrations in plasma cell leukemia shown by interphase fluorescence in situ hybridization. Cancer Genet Cytogenet 2005; 156: 150–153
  • Chang H, Sloan S, Li D, Zhuang L, Yi O L, Chen C I, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004; 125: 64–68
  • Finelli P, Fabris S, Zagano S, Baldini L, Intini D, Nobili L, et al. Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by double-color fluorescent in situ hybridization. Blood 1999; 94: 724–732
  • Fonseca R, Oken M M, Greipp P R. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood 2001; 98: 1271–1272
  • Garand R, Avet-Loiseau H, Accard F, Moreau P, Harousseau J L, Bataille R. t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma. Leukemia 2003; 17: 2032–2035
  • Gertz M A, Lacy M Q, Dispenzieri A, Greipp P R, Litzow M R, Henderson K J, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005; 106: 2837–2840
  • Moreau P, Facon T, Leleu X, Morineau N, Huyghe P, Harousseau J L, et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002; 100: 1579–1583
  • Sibley K, Fenton J A, Dring A M, Ashcroft A J, Rawstron A C, Morgan G J. A molecular study of the t(4;14) in multiple myeloma. Br J Haematol 2002; 118: 514–520
  • Fonseca R, Bailey R J, Ahmann G J, Rajkumar S V, Hoyer J D, Lust J A, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100: 1417–1424
  • Van Wier S A, Ahmann G J, Henderson K J, Greipp P R, Rajkumar S V, Larson D M, et al. The t(4;14) is present in patients with early stage plasma cell proliferative disorders including MGUS and smoldering multiple myeloma (SMM). ASH Annual Meeting Abstracts 2005; 106: 1545
  • Kaufmann H, Ackermann J, Baldia C, Nosslinger T, Wieser R, Seidl S, et al. Both IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma. Leukemia 2004; 18: 1879–1882
  • Rasmussen T, Hudlebusch H R, Knudsen L M, Johnsen H E. FGFR3 dysregulation in multiple myeloma: frequency and prognostic relevance. Br J Haematol 2002; 117: 626–628
  • Oken M M, Leong T, Lenhard R E, Jr, Greipp P R, Kay N E, Van Ness B, et al. The addition of interferon or high dose cyclophosphamide to standard chemotherapy in the treatment of patients with multiple myeloma: phase III Eastern Cooperative Oncology Group Clinical Trial EST 9486. Cancer 1999; 86: 957–968
  • Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Harousseau J L, et al. A comprehenseive analysis of cytogenetic abnomalities in myeloma: results of the FISH analysis of 1000 patients enrolled in the IFM99 trials. Blood 2005; 106: A622
  • Affer M, Robbiani D F, Chesi M, Bergsagel P L. Ectopic fibroblast growth factor receptor 3 (FGFR3) expression mediated by isotype switch recombination. Blood 2004; 104: 25A
  • Chesi M, Brents L A, Ely S A, Bais C, Robbiani D F, Mesri E A, et al. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood 2001; 97: 729–736
  • Li Z, Zhu Y X, Plowright E E, Bergsagel P L, Chesi M, Patterson B, et al. The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells. Blood 2001; 97: 2413–2419
  • Plowright E E, Li Z, Bergsagel P L, Chesi M, Barber D L, Branch D R, et al. Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood 2000; 95: 992–998
  • Ronchetti D, Greco A, Compasso S, Colombo G, Dell'Era P, Otsuki T, et al. Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G384D mutations. Oncogene 2001; 20: 3553–3562
  • Webster M K, Donoghue D J. Enhanced signaling and morphological transformation by a membrane-localized derivative of the fibroblast growth factor receptor 3 kinase domain. Mol Cell Biol 1997; 17: 5739–5747
  • Fracchiolla N S, Luminari S, Baldini L, Lombardi L, Maiolo A T, Neri A. FGFR3 gene mutations associated with human skeletal disorders occur rarely in multiple myeloma. Blood 1998; 92: 2987–2989
  • Intini D, Baldini L, Fabris S, Lombardi L, Ciceri G, Maiolo A T, et al. Analysis of FGFR3 gene mutations in multiple myeloma patients with t(4;14). Br J Haematol 2001; 114: 362–364
  • Intini D, Baldini L, Lombardi L, Neri A. A novel mutation involving the carboxy terminal region of the FGFR3 gene in a multiple myeloma patient with t(4;14). Leukemia 2002; 16: 1201–1202
  • Onwuazor O N, Wen X Y, Wang D Y, Zhuang L, Masih-Khan E, Claudio J, et al. Mutation, SNP, and isoform analysis of fibroblast growth factor receptor 3 (FGFR3) in 150 newly diagnosed multiple myeloma patients. Blood 2003; 102: 772–773
  • Trudel S, Li Z H, Wei E, Wiesmann M, Chang H, Chen C, et al. CHIR-258, a novel, multi-targeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005; 105: 2941–2948
  • Trudel S, Ely S, Farooqi Y, Affer M, Robbiani D F, Chesi M, et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 2004; 103: 3521–3528
  • Trudel S, Stewart A K, Rom E, Wei E, Li Z H, Kotzer S, et al. The inhibitory anti-FGFR3 antibody, PRO-001 is cytotoxic to t(4;14) multiple myeloma cells. Blood 2006; 107: 4039–4046
  • Grand E K, Chase A J, Heath C, Rahemtulla A, Cross N C. Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074. Leukemia 2004; 18: 962–966
  • Paterson J L, Li Z, Wen X Y, Masih-Khan E, Chang H, Pollett J B, et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 2004; 124: 595–603
  • Chen J, Lee B H, Williams I R, Kutok J L, Mitsiades C S, Duclos N, et al. FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 2005; 24: 8259–8267
  • Choi H H, Jong H S, Park J H, Choi S, Lee J W, Kim T Y, et al. A novel ginseng saponin metabolite induces apoptosis and down-regulates fibroblast growth factor receptor 3 in myeloma cells. Int J Oncol 2003; 23: 1087–1093
  • Zhu L, Somlo G, Zhou B, Shao J, Bedell V, Solvak M L, et al. Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis in multiple myeloma. Mol Cancer Ther 2005; 4: 787–798
  • Qian S, Somlo G, Zhou B, Zhu L, Mi S, Mo X, et al. Ribozyme cleavage leads to decreased expression of fibroblast growth factor receptor 3 in human multiple myeloma cells, which is associated with apoptosis and downregulation of vascular endothelial growth factor. Oligonucleotides 2005; 15: 1–11
  • Rasmussen T, Theilgaard-Monch K, Hudlebusch H R, Lodahl M, Johnsen H E, Dahl I M. Occurrence of dysregulated oncogenes in primary plasma cells representing consecutive stages of myeloma pathogenesis: indications for different disease entities. Br J Haematol 2003; 123: 253–262
  • Todoerti K, Ronchetti D, Agnelli L, Castellani S, Marelli S, Deliliers G L, et al. Transcription repression activity is associated with the type I isoform of the MMSET gene involved in t(4;14) in multiple myeloma. Br J Haematol 2005; 131: 214–218
  • Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev 2002; 12: 198–209
  • Rayasam G V, Wendling O, Angrand P O, Mark M, Niederreither K, Song L, et al. NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J 2003; 22: 3153–3163
  • Strahl B D, Grant P A, Briggs S D, Sun Z W, Bone J R, Caldwell J A, et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 2002; 22: 1298–1306
  • Garlisi C G, Uss A S, Xiao H, Tian F, Sheridan K E, Wang L, et al. A unique mRNA initiated within a middle intron of WHSC1/MMSET encodes a DNA binding protein that suppresses human IL-5 transcription. Am J Respir Cell Mol Biol 2001; 24: 90–98
  • Hudlebusch H R, Theilgaard-Monch K, Lodahl M, Johnsen H E, Rasmussen T. Identification of ID-1 as a potential target gene of MMSET in multiple myeloma. Br J Haematol 2005; 130: 700–708
  • Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 2005; 24: 2461–2473
  • Zojer N, Konigsberg R, Ackermann J, Fritz E, Dallinger S, Kromer E, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 2000; 95: 1925–1930
  • Shaughnessy J, Tian E, Sawyer J, Bumm K, Landes R, Badros A, et al. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood 2000; 96: 1505–1511
  • Intini D, Fabris S, Storlazzi T, Otsuki T, Ciceri G, Verdelli D, et al. Identification of a novel IGH-MMSET fusion transcript in a human myeloma cell line with the t(4;14)(p16.3;q32) chromosomal translocation. Br J Haematol 2004; 126: 437–439
  • Tajima E, Uranishi M, Iida S, Komatsu H, Nitta M, Ueda R. Global real-time quantification/reverse transcription-polymerase chain reaction for detecting proto-oncogenes associated with 14q32 chromosomal translocation in multiple myeloma. Haematologica 2005; 90: 559–562
  • Chang H, Stewart A K, Qi X Y, Li Z H, Yi Q L, Trudel S. Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. Blood 2005; 106: 353–355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.