496
Views
17
CrossRef citations to date
0
Altmetric
Review

Bcl-2 expression and apoptosis in the regulation of hematopoietic stem cells

&
Pages 16-24 | Received 14 Sep 2006, Accepted 24 Sep 2006, Published online: 01 Jul 2009

References

  • Lemischka I R. The haemopoietic stem cell and its clonal progeny: mechanisms regulating the hierarchy of primitive haematopoietic cells. Cancer Surveys 1992; 15: 3–18
  • Medvinsky A L, Dzierzak E A. Development of the definitive hematopoietic hierarchy in the mouse. Dev Comp Immunol 1998; 22: 289–301
  • Orkin S. Diversification of haematopoietic stem cells to specific lineages. Nature Rev 2000; 1: 57–64
  • Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121
  • Ikuta K, Weissman I L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 1992; 89: 1502–1506
  • Sanchez M J, Holmes A, Miles C, Dzierzak E. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 1996; 5: 513–525
  • Ma X, Robin C, Ottersbach K, Dzierzak E. The Ly-6A (Sca-1) GFP transgene is expressed in all adult mouse hematopoietic stem cells. Stem Cells 2002; 20: 514–521
  • Dzierzak E, Medvinsky A, de Bruijn M. Qualitative and quantitative aspects of hematopoietic cell development in the mammalian embryo. Imm Today 1998; 19: 228–236
  • Marsden V S, Strasser A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu Rev Immunol 2003; 21: 71–105
  • Cheshier S H, Morrison S J, Liao X, Weissman I L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 1999; 96: 3120–3125
  • de Haan G, Nijhof W, van Zant G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 1997; 89: 1543–1550
  • de Haan G, Bystrykh L V, Weersing E, Dontje B, Geiger H, Ivanova N, et al. A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood 2002; 100: 2056–2062
  • de Haan G, van Zant G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 1999; 93: 3294–3301
  • Morrison S J, Prowse K R, Ho P, Weismann I L. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 1996; 5: 207–216
  • Samper E, Fernandez P, Eguia R, Martin-Rivera L, Bernad A, Blasco M A, et al. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 2002; 99: 2767–2775
  • Muller A M, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1994; 1: 291–301
  • Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86: 897–906
  • de Bruijn M F, Speck N A, Peeters M C, Dzierzak E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000; 19: 2465–2474
  • Tavian M, Coulombel L, Luton D, Clemente H S, Dieterlen-Lievre F, Peault B. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 1996; 87: 67–72
  • Mendes S C, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 2005; 132: 1127–1136
  • Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 2005; 8: 377–387
  • Gekas C, Dieterlen-Lievre F, Orkin S H, Mikkola H K. The placenta is a niche for hematopoietic stem cells. Dev Cell 2005; 8: 365–375
  • Kumaravelu P, Hook L, Morrison A M, Ure J, Zhao S, Zuyev S, et al. Quantitative developmental anatomy of definitive hematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 2002; 129: 4891–4899
  • Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 2000; 95: 2284–2288
  • Moore K A, Lemischka I R. Stem cells and their niches. Science 2006; 311: 1880–1885
  • Maurer U, Charvet C, Wagman A S, Dejardin E, Green D R. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006; 21: 749–760
  • Karlsson R, Engstrom M, Jonsson M, Karlberg P, Pronk C J, Richter J, et al. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes. J Leukoc Biol 2003; 74: 923–931
  • Sanz C, Benito A, Inohara N, Ekhterae D, Nunez G, Fernandez-Luna J L. Specific and rapid induction of the proapoptotic protein Hrk after growth factor withdrawal in hematopoietic progenitor cells. Blood 2000; 95: 2742–2747
  • Shinjyo T, Kuribara R, Inukai T, Hosoi H, Kinoshita T, Miyajima A, et al. Downregulation of Bim, a proapoptotic relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic progenitors. Mol Cell Biol 2001; 21: 854–864
  • Calvi L M, Adams G B, Weibrecht K W, Weber J M, Olson D P, Knight M C, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846
  • Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841
  • Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161
  • Oostendorp R A, Medvinsky A J, Kusadasi N, Nakayama N, Harvey K, Orelio C, et al. Embryonal subregion-derived stromal cell lines from novel temperature-sensitive SV40 T antigen transgenic mice support hematopoiesis. J Cell Sci 2002; 115: 2099–2108
  • Oostendorp R A, Robin C, Steinhoff C, Marz S, Brauer R, Nuber U A, et al. Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells 2005; 23: 842–851
  • Wineman J, Moore K, Lemischka I, Muller-Sieburg C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 1996; 87: 4082–4090
  • Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, et al. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 2006; 11: 171–180
  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer S J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–628
  • Poommipanit P B, Chen B, Oltvai Z N. Interleukin-3 induces the phosphorylation of a distinct fraction of bcl-2. J Biol Chem 1999; 274: 1033–1039
  • Ito T, Deng X, Carr B, May W S. Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671–11673
  • Hengartner M O. The biochemistry of apoptosis. Nature 2000; 407: 770–776
  • Cohen G M. Caspases: the executioners of apoptosis. Biochem J 1997; 326: 1–16
  • Ashkenazi A, Dixit V M. Death receptors: signaling and modulation. Science 1998; 281: 1305–1308
  • Thornberry N A, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312–1316
  • Siegel R M. Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 2006; 6: 308–317
  • Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce C M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985; 229: 1390–1393
  • Cleary M L, Smith S D, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986; 47: 19–28
  • Vaux D L, Cory S, Adams J M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442
  • Hockenbery D, Nunez G, Milliman C, Schreiber R D, Korsmeyer S J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336
  • McDonnell T J, Deane N, Platt F M, Nunez G, Jaeger U, McKearn J P, et al. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79–88
  • Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–1326
  • Gross A, McDonnell J M, Korsmeyer S J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899–1911
  • Pellegrini M, Strasser A. A portrait of the Bcl-2 protein family: life, death, and the whole picture. J Clin Immunol 1999; 19: 365–377
  • Korsmeyer S J, Wei M C, Saito M, Weiler S, Oh K J, Schlesinger P H. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000; 7: 1166–1173
  • Hockenbery D M, Zutter M, Hickey W, Nahm M, Korsmeyer S J. Bcl-2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 1991; 88: 6961–6965
  • Lagasse E, Weissman I L. Bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 1994; 179: 1047–1052
  • Park J R, Robertson K, Hickstein D D, Tsai S, Hockenbery D M, Collins S J. Dysregulated bcl-2 expression inhibits apoptosis but not differentiation of retinoic acid-induced HL-60 granulocytes. Blood 1994; 84: 440–445
  • Strasser A, Harris A W, Cory S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 1991; 67: 889–899
  • Strasser A, Whittingham S, Vaux D L, Bath M L, Adams J M, Cory S, et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA 1991; 88: 8661–8665
  • Ma A, Pena J C, Chang B, Margosian E, Davidson L, Alt F W, et al. Bclx regulates the survival of double-positive thymocytes. Proc Natl Acad Sci USA 1995; 92: 4763–4767
  • Park J R, Bernstein I D, Hockenbery D M. Primitive human hematopoietic precursors express Bcl-x but not Bcl-2. Blood 1995; 86: 868–876
  • Peters R, Leyvraz S, Perey L. Apoptotic regulation in primitive hematopoietic precursors. Blood 1998; 92: 2041–2052
  • Nakayama K, Nakayama K, Negishi I, Kuida K, Sawa H, Loh D Y. Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci USA 1994; 91: 3700–3704
  • Veis D J, Sorenson C M, Shutter J R, Korsmeyer S J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993; 75: 229–240
  • Motoyama N, Wang F, Roth K A, Sawa H, Nakayama K, Nakayama K, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995; 267: 1506–1510
  • Ogilvy S, Elefanty A G, Visvader J, Bath M L, Harris A W, Adams J M. Transcriptional regulation of vav, a gene expressed throughout the hematopoietic compartment. Blood 1998; 91: 419–430
  • Ogilvy S, Metcalf D, Print C G, Bath M L, Harris A W, Adams J M. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci USA 1999; 96: 14943–14948
  • Domen J, Gandy K L, Weissman I L. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 1998; 91: 2272–2282
  • Domen J, Weissman I L. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J Exp Med 2000; 192: 1707–1718
  • Domen J, Cheshier S H, Weissman I L. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med 2000; 191: 253–264
  • Orelio C, Harvey K N, Miles C, Oostendorp R A, van der Horn K, Dzierzak E. The role of apoptosis in the development of AGM hematopoietic stem cells revealed by Bcl-2 overexpression. Blood 2004; 103: 4084–4092
  • de Bruijn M F, Ma X, Robin C, Ottersbach K, Sanchez M J, Dzierzak E. Hematopoietic stem cells localize to the endothelial cell layer in the mid-gestation mouse aorta. Immunity 2002; 16: 673–683
  • Ivanova N B, Dimos J T, Schaniel C, Hackney J A, Moore K A, Lemischka I R. A stem cell molecular signature. Science 2002; 298: 601–604
  • Forsberg E C, Prohaska S S, Katzman S, Heffner G C, Stuart J M, Weissman I L. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet 2005; 1: e28
  • Reya T, Duncan A W, Ailles L, Domen J, Scherer D C, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.