90
Views
11
CrossRef citations to date
0
Altmetric
Original

Overexpression of SOCS-2 and SOCS-3 genes reverses erythroid overgrowth and IGF-I hypersensitivity of primary polycythemia vera (PV) cells

, , , , &
Pages 134-146 | Received 03 Feb 2006, Accepted 18 Aug 2006, Published online: 01 Jul 2009

References

  • Adamson J W, Fialkow P J, Murphy S, Prchal J F, Steinmann L. Polycythemia vera: stem cell and probable clonal origin of the disease. New Engl J Med 1976; 295: 913–916
  • Golde D W, Cline M J. Pathogenesis of polycythemia vera – new concepts. Am J Hematol 1976; 1: 351–355
  • Spivak J L. Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100: 4272–4290
  • Vaquez H. Sur une forme speciale de cyanose s'accompagnant d'hyperglobulie excessive et persistante. Comptes Rendus de la Societé dè Biologie (Paris) 1892; 44: 384–388
  • Osler W. Chronic cyanosis, with polycythemia and enlarged spleen: a new clinical entity. Am J Med Sci 1903; 126: 176–201
  • Berlin N I. Diagnosis and classification of the polycythemias. Semin Hematol 1974; 12: 339–351
  • Spivak J L, Pham J, Isaacs M, Hankins W D. Erythropoietin is both a mitogen and a survival factor. Blood 1991; 77: 1228–1233
  • de Klerk G, Rosengarten P C, Vet R J, Goudsmit R. Serum erythropoietin (ESF) titer in polycythemia. Blood 1981; 58: 1171–1174
  • Carneskog J, Kutti J, Wadenvik H, Lundberg P A, Lindstedt G. Plasma erythropoietin by high detectability immunoradiometric assay in untreated and treated patients with polycythemia vera and essential thrombocythemia. Eur J Haematol 1998; 60: 278–282
  • Prchal J F, Axelrad A A. Bone-marrow responses in polycythemia vera. New Engl J Med 1974; 290: 1382
  • Fisher M J, Prchal J F, Prchal J T, D'Andrea A D. Anti-erythropoietin (EPO) receptor monoclonal antibodies distinguish EPO-dependent and EPO-independent erythroid progenitors in polycythemia vera. Blood 1994; 84: 1982–1991
  • Correa P N, Eskinazi D, Axelrad A A. Circulating erythroid progenitors in Polycythemia vera are hypersensitive to IGF-I in vitro: studies in an improved serum-free medium. Blood 1994; 83: 99–112
  • Axelrad A A. Growth factor signaling in Polycythemia vera cells: specific hypersensitivities to cytokines in the chronic myeloproliferative disorders. Molecular Basis of Chronic Myeloproliferative Disorders, P E Petrides, H L Pahl. Springer-Verlag, Berlin 2004; 65–73
  • Werther G A, Haynes K, Johnson G R. Insulin-like growth factors promote DNA synthesis and support cell viability in fetal hemopoietic tissue by paracrine mechanisms. Growth Factors 1990; 3: 171–179
  • Le Roith D, Werner H, Beitner-Johnson D, Roberts C T, Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 1995; 16: 143–163
  • Muta K, Krantz S B. Apoptosis of human erythroid colony-forming cells is decreased by stem cell factor and insulin-like growth factor I as well as by erythropoietin. J Cell Physiol 1993; 156: 264–271
  • Peruzzi F, Prisca M, Dews M, Salomoni P, Grassilli E, Romano G, et al. Multiple signaling pathways of the insulin-like growth factor I receptor in protection from apoptosis. Mol Cell Biol 1999; 19: 7203–7215
  • Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B. The IGF-I receptor in cell growth, transformation and apoptosis. Biochem Biophys Acta 1997; 1332: F105–F126
  • Valentinis B, Romano G, Peruzzi F, Morrione A, Prisco M, Soddu S, et al. Growth and differentiation signals by the insulin- like growth factor-I receptor in hemopoietic cells are mediated through different pathways. J Biol Chem 1999; 274: 12423–12430
  • Mirza A M, Correa P N, Axelrad A A. Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor I receptor β subunit in circulating mononuclear cells of patients with Polycythemia vera. Blood 1995; 86: 877–882
  • James C, Ugo V, Le Couedic J. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148
  • Baxter E J, Scott L M, Campbell P J, East C, Fourouclas N, Swanton S, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061
  • Levine R L, Wadleigh M, Cools J, Ebert B, Wernig G, Huntly B, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397
  • Kralovics R, Passamonti F, Buser A S, Teo S, Tiedt R, Passweg J, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790
  • Axelrad A A, Eskinazi D, Correa P N, Amato D. Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHuMGDF) in essential thrombocythemia. Blood 2000; 96: 3310–3321
  • Axelrad A A, Eskinazi D, Amato D. Does hypersensitivity of progenitor cells to normal cytokine(s) play a role in the pathogenesis of idiopathic myelofibrosis with myeloid metaplasia?. Blood 1999; 94: 2886
  • Staerk J, Kallin A, Demoulin J B, Vainchenker W, Constantinescu S N. JAK1 and Tyk2 activation by the homologous Polycythemia vera JAK2 V617F mutation: cross talk with IGFI receptor. J Biol Chem 2005; 280: 41893–41899
  • Kralovics R, Stockton D W, Prchal J T. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood 2003; 102: 3793–3796
  • Kovanen P E, Leonard W J. Inhibitors keep cytokines in check. Curr Biol 1999; 9: R899–R902
  • Krebs D L, Hilton D J. SOCS: physiological suppressors of cytokine signaling. J Cell Sci 2000; 113: 2813–2819
  • Hilton D J, Richardson R T, Alexander W S, Viney E M, Willson T A, Sprigg N S, et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 1998; 95: 114–119
  • Zhang J G, Farley A, Nicholson S E, Willson T A, Zugaro L M, Simpson R J, et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 1999; 96: 2071–2076
  • Rui L, Yuan M, Frantz D, Shoelson S, White M F. SOCS1 and SOCS3 block signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002; 277: 42394–42398
  • Emanuelli B, Peraldi P, Filloux C, Sowka-Verhelle D, Hilton D, Van Obberghen E. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 2000; 275: 15985–15991
  • Correa P N, Axelrad A A. Production of erythropoietic bursts by progenitor cells from adult human peripheral blood in an improved serum-free medium: role of IGF-I. Blood 1991; 78: 2823–2833
  • Zong C S, Chan J, Levy D E, Horvath C, Sadowski H B, Wang L H. Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 2000; 275: 15099–15105
  • Roder S, Steimle C, Meinhardt G, Pahl H L. STAT3 is constitutively active in some patients with Polycythemia rubra vera. Exp Hematol 2001; 29: 694–702
  • Dey B R, Spence S L, Nissley P, Furlanetto R W. Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem 1998; 273: 24095–24101
  • Magrangeas F, Boisteau O, Denis S, Jasques Y, Minvielle S. Negative cross-talk between interleukin-3 and interleukin-11 is mediated by suppressor of cytokine signalling-3 (SOCS-3). Biochem J 2001; 353: 223–230
  • Greenhalgh C J, Metcalf D, Thaus A L, Corbin J E, Uren R, Morgan P O, et al. Biological evidence that SOCS-2 can act either as an enhancer or suppressor of growth hormone signaling. J Biol Chem 2002; 277: 40181–40184
  • Ram P A, Waxman K J. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 1999; 274: 35553–35561
  • Adams T E, Hansen J A, Starr R, Nicola N A, Hilton D J, Billestrup N. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 1998; 273: 1285–1287
  • Favre H, Benhamou A, Finidori J, Kelly P A, Edery M. Dual effects of suppressor of cytokine signaling (SOCS-2) on growth hormone signal transduction. FEBS Lett 1999; 453: 63–66
  • Goldshmit Y, Walters C E, Scott H J, Greenhalgh G J, Turnley A M. SOCS 2 induces neurite outgrowth by regulation of EGF receptor activation. J Biol Chem 2004; 279: 16349–16355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.