170
Views
19
CrossRef citations to date
0
Altmetric
Review

Autocrine VEGF loops, signaling pathways, and acute leukemia regulation

, &
Pages 481-488 | Received 09 Oct 2006, Accepted 12 Oct 2006, Published online: 01 Jul 2009

References

  • Leung D W, Cachianes G, Kuang W J, Goeddel D V, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309
  • Perez-Atayde A R, Sallan S E, Tedrow U, Connors S, Allred E, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821
  • Yetgin S, Yenicesu I, Cetin M, Tuncer M. Clinical importance of serum vascular endothelial and basic fibroblast growth factors in children with acute lymphoblastic leukemia. Leuk Lymphoma 2001; 42: 83–88
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364
  • Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875
  • Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M, et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 1999; 94: 3717–3721
  • Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245
  • Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644
  • Hussong J W, Rodgers G M, Shami P J. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313
  • de Bont E S, Rosati S, Jacobs S, Kamps W A, Vellenga E. Increased bone marrow vascularization in patients with acute myeloid leukaemia: a possible role for vascular endothelial growth factor. Br J Haematol 2001; 113: 296–304
  • Ghannadan M, Wimazal F, Simonitsch I, Sperr W R, Mayerhofer M, Sillaber C, et al. Immunohistochemical detection of VEGF in the bone marrow of patients with acute myeloid leukemia. Correlation between VEGF expression and the FAB category. Am J Clin Pathol 2003; 119: 663–671
  • Brunner B, Gunsilius E, Schumacher P, Zwierzina H, Gastl G, Stauder R. Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Hematother Stem Cell Res 2002; 11: 119–125
  • Lundberg L G, Lerner R, Sundelin P, Rogers R, Folkman J, Palmblad J. Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am J Pathol 2000; 157: 15–19
  • Verstovsek S, Lunin S, Kantarjian H, Manshouri T, Faderl S, Cortes J, et al. Clinical relevance of VEGF receptors 1 and 2 in patients with chronic myelogenous leukemia. Leuk Res 2003; 27: 661–669
  • Chen H, Treweeke A T, West D C, Till K J, Cawley J C, Zuzel M, et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 2000; 96: 3181–3187
  • Koomagi R, Zintl F, Sauerbrey A, Volm M. Vascular endothelial growth factor in newly diagnosed and recurrent childhood acute lymphoblastic leukemia as measured by real-time quantitative polymerase chain reaction. Clin Cancer Res 2001; 7: 3381–3384
  • Hu Q, Dey A L, Yang Y, Shen Y, Jilani I B, Estey E H, et al. Soluble vascular endothelial growth factor receptor 1, and not receptor 2, is an independent prognostic factor in acute myeloid leukemia and myelodysplastic syndromes. Cancer 2004; 100: 1884–1891
  • Bellamy W T, Richter L, Frutiger Y, Grogan T M. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728–733
  • Padro T, Bieker R, Ruiz S, Steins M, Retzlaff S, Burger H, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002; 16: 1302–1310
  • Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000; 106: 511–521
  • Aguayo A, Kantarjian H M, Estey E H, Giles F J, Verstovsek S, Manshouri T, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002; 95: 1923–1930
  • de Bont E S, Fidler V, Meeuwsen T, Scherpen F, Hahlen K, Kamps W A. Vascular endothelial growth factor secretion is an independent prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients. Clin Cancer Res 2002; 8: 2856–2861
  • Faderl S, Do K A, Johnson M M, Keating M, O'Brien S, Jilani I, et al. Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood 2005; 106: 4303–4307
  • Molica S, Vacca A, Levato D, Merchionne F, Ribatti D. Angiogenesis in acute and chronic lymphocytic leukemia. Leuk Res 2004; 28: 321–324
  • Frankel A E, Gill P S. VEGF and myeloid leukemias. Leuk Res 2004; 28: 675–677
  • Aguayo A, Giles F, Albitar M. Vascularity, angiogenesis and angiogenic factors in leukemias and myelodysplastic syndromes. Leuk Lymphoma 2003; 44: 213–222
  • Liu P, Wang Y, Li Y H, Yang C, Zhou Y L, Li B, et al. Adenovirus-mediated gene therapy with an antiangiogenic fragment of thrombospondin-1 inhibits human leukemia xenograft growth in nude mice. Leuk Res 2003; 27: 701–708
  • Lai R, Estey E, Shen Y, Despa S, Kantarjian H, Beran M, et al. Clinical significance of plasma endostatin in acute myeloid leukemia/myelodysplastic syndrome. Cancer 2002; 94: 14–17
  • Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845
  • Levy A P, Levy N S, Wegner S, Goldberg M A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995; 270: 13333–13340
  • Liu Y, Cox S R, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ Res 1995; 77: 638–643
  • Jiang B H, Agani F, Passaniti A, Semenza G L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 1997; 57: 5328–5335
  • Shi Q, Le X, Abbruzzese J L, Peng Z, Qian C N, Tang H, et al. Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 2001; 61: 4143–4154
  • Deroanne C F, Hajitou A, Calberg-Bacq C M, Nusgens B V, Lapiere C M. Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine up-regulation of vascular endothelial growth factor expression. Cancer Res 1997; 57: 5590–5597
  • Ryuto M, Ono M, Izumi H, Yoshida S, Weich H A, Kohno K, et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 1996; 271: 28220–28228
  • Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J Biol Chem 1994; 269: 6271–6274
  • Goad D L, Rubin J, Wang H, Tashjian A H, Jr, Patterson C. Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology 1996; 137: 2262–2268
  • Li J, Perrella M A, Tsai J C, Yet S F, Hsieh C M, Yoshizumi M, et al. Induction of vascular endothelial growth factor gene expression by interleukin-1β in rat aortic smooth muscle cells. J Biol Chem 1995; 270: 308–312
  • Cohen T, Nahari D, Cerem L W, Neufeld G, Levi B Z. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271: 736–741
  • Matsumoto K, Ohi H, Kanmatsuse K. Interleukin 10 and interleukin 13 synergize to inhibit vascular permeability factor release by peripheral blood mononuclear cells from patients with lipoid nephrosis. Nephron 1997; 77: 212–218
  • Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 1996; 56: 2299–2301
  • Van Meir E G, Polverini P J, Chazin V R, Su Huang H J, de Tribolet N, Cavenee W K. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 1994; 8: 171–176
  • Mukhopadhyay D, Knebelmann B, Cohen H T, Ananth S, Sukhatme V P. The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 1997; 17: 5629–5639
  • Teodoro J G, Parker A E, Zhu X, Green M R. p53-Mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 2006; 313: 968–971
  • Scortegagna M, Morris M A, Oktay Y, Bennett M, Garcia J A. The HIF family member EPAS1/HIF-2α is required for normal hematopoiesis in mice. Blood 2003; 102: 1634–1640
  • Mortensen B T, Jensen P O, Helledie N, Iversen P O, Ralfkiaer E, Larsen J K, et al. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. Br J Haematol 1998; 102: 458–464
  • Wellmann S, Guschmann M, Griethe W, Eckert C, von Stackelberg A, Lottaz C, et al. Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia 2004; 18: 926–933
  • Mayerhofer M, Valent P, Sperr W R, Griffin J D, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1α, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100: 3767–3775
  • Narendran A, Ganjavi H, Morson N, Connor A, Barlow J W, Keystone E, et al. Mutant p53 in bone marrow stromal cells increases VEGF expression and supports leukemia cell growth. Exp Hematol 2003; 31: 693–701
  • Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 2002; 99: 2179–2184
  • Bellamy W T. Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 2001; 28: 551–559
  • Allouche M, Bayard F, Clamens S, Fillola G, Sie P, Amalric F. Expression of basic fibroblast growth factor (bFGF) and FGF-receptors in human leukemic cells. Leukemia 1995; 9: 77–86
  • Katoh O, Takahashi T, Oguri T, Kuramoto K, Mihara K, Kobayashi M, et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res 1998; 58: 5565–5569
  • Gerber H P, Malik A K, Solar G P, Sherman D, Liang X H, Meng G, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417: 954–958
  • Santos S C, Dias S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 2004; 103: 3883–3889
  • Dias S, Shmelkov S V, Lam G, Rafii S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002; 99: 2532–2540
  • Wang L, Chen L, Benincosa J, Fortney J, Gibson L F. VEGF-induced phosphorylation of Bcl-2 influences B lineage leukemic cell response to apoptotic stimuli. Leukemia 2005; 19: 344–353
  • List A F, Glinsmann-Gibson B, Stadheim C, Meuillet E J, Bellamy W, Powis G. Vascular endothelial growth factor receptor-1 and receptor-2 initiate a phosphatidylinositide 3-kinase-dependent clonogenic response in acute myeloid leukemia cells. Exp Hematol 2004; 32: 526–535
  • Fragoso R, Pereira T, Wu Y, Zhu Z, Cabecadas J, Dias S. VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 2006; 107: 1608–1616
  • Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 2001; 98: 10857–10862
  • Zhang H, Li Y, Li H, Bassi R, Jimenez X, Witte L, et al. Inhibition of both the autocrine and the paracrine growth of human leukemia with a fully human antibody directed against vascular endothelial growth factor receptor 2. Leuk Lymphoma 2004; 45: 1887–1897
  • Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000; 105: 1045–1047
  • Bartlett J B, Dredge K, Dalgleish A G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004; 4: 314–322
  • Hayashi T, Hideshima T, Anderson K C. Novel therapies for multiple myeloma. Br J Haematol 2003; 120: 10–17
  • Steins M B, Padro T, Bieker R, Ruiz S, Kropff M, Kienast J, et al. Efficacy and safety of thalidomide in patients with acute myeloid leukemia. Blood 2002; 99: 834–839
  • Thomas D A, Estey E, Giles F J, Faderl S, Cortes J, Keating M, et al. Single agent thalidomide in patients with relapsed or refractory acute myeloid leukaemia. Br J Haematol 2003; 123: 436–441
  • Roboz G J, Dias S, Lam G, Lane W J, Soignet S L, Warrell R P, Jr, et al. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 2000; 96: 1525–1530
  • Park M J, Park I C, Bae I J, Seo K M, Lee S H, Hong S I, et al. Tetraarsenic oxide, a novel orally administrable angiogenesis inhibitor. Int J Oncol 2003; 22: 1271–1276
  • Kini A R, Peterson L A, Tallman M S, Lingen M W. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood 2001; 97: 3919–3924
  • Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U, et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003; 102: 2763–2767
  • Giles F J, Cooper M A, Silverman L, Karp J E, Lancet J E, Zangari M, et al. Phase II study of SU5416 – a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor – in patients with refractory myeloproliferative diseases. Cancer 2003; 97: 1920–1928
  • Giles F J, Stopeck A T, Silverman L R, Lancet J E, Cooper M A, Hannah A L, et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003; 102: 795–801

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.