206
Views
27
CrossRef citations to date
0
Altmetric
Original

Expression level of lipoprotein lipase and dystrophin genes predict survival in B-cell chronic lymphocytic leukemia

, , , , , , , , , , , , & show all
Pages 912-922 | Received 30 Oct 2006, Accepted 24 Jan 2007, Published online: 01 Jul 2009

References

  • Montillo M, Hamblin T, Hallek M, Montserrat E, Morra E. Chronic lymphocytic leukemia: novel prognostic factors and their relevance for risk-adapted therapeutic strategies. Haematologica 2005; 90: 391–399
  • Bosch F, Montserrat E. Refining prognostic factors in chronic lymphocytic leukemia. Rev Clin Exp Hematol 2002; 6: 335–349, 449 – 450
  • Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen S L, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525
  • Hamblin T J, Davis Z, Gardiner A, Oscier D G, Stevenson F K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854
  • Damle R N, Wasil T, Fais F, Ghiotto F, Valetto A, Allen S L, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847
  • Rosenwald A, Alizadeh A A, Widhopf G, Simon R, Davis R E, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647
  • Klein U, Tu Y, Stolovitzky G A, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638
  • Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P, Kraut N, et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 2004; 22: 3937–3949
  • Wiestner A, Rosenwald A, Barry T S, Wright G, Davis R E, Henrickson S E, et al. ZAP70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951
  • Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Marce M, et al. ZAP70 expression as a surrogate for immunoglobulin variable region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775
  • Rassenti L Z, Huynh L, Toy T L, Chen L, Keating M J, Gribben G, et al. ZAP70 compared with immunoglobulin heavy chain gene mutation status as a predictor of disease progression lymphocytic leukemia. N Engl J Med 2004; 351: 893–901
  • Orchard J A, Ibbotson R E, Davis Z, Wiestner A, Rosenwald T PW, Hamblin T J, et al. ZAP70 expression and prognosis chronic lymphocytic leukaemia. Lancet 2004; 363: 105–111
  • Cheson B D, Bennett J M, Grever M, Kay N, Keating M J, O'Brien S, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 1996; 87: 4990–4997
  • Campbell M J, Zelenetz A D, Levy S, Levy R. Use of family specific leader region primers for PCR amplification of the human heavy chain variable region repertoire. Mol Immunol 1992; 29: 193–203
  • van Dongen J J, Langerak A W, Bruggemann M, Evans P A, Hummel M, Lavender F L, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: 0034.1–0034.11
  • Matsuda F, Shin E K, Nagaoka H, Matsumura R, Haino M, Fukita Y, et al. Structure and physical map of 64 variable segments in the 3′0.8-megabase region of the human immunoglobulin heavy-chain locus. Nat Genet 1993; 3: 88–94
  • Davis Z, Orchard J, Corcoran M, Oscier D. Divergence from the germ-line sequence in unmutated chronic lymphocytic leukemia is due to somatic mutation rather than polymorphisms. Blood 2003; 102: 3075
  • Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416
  • Lin K, Sherrington P D, Dennis M, Matrai Z, Cawley J C, Pettitt A R. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia. Blood 2002; 100: 1404–1409
  • Tobin G, Thunberg U, Laurell A, Karlsson K, Aleskog A, Willander K, et al. Patients with chronic lymphocytic leukemia with mutated VH genes presenting with Binet stage B or C form a subgroup with a poor outcome. Haematologica 2005; 90: 465–469
  • Gbaguidi F G, Chinetti G, Milosavljevic D, Teissier E, Chapman J, Olivecrona G, et al. Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Let 2002; 512: 85–90
  • Patalay M, Lofgren I E, Freake H C, Koo S I, Fernandez M L. The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. J Nutr 2005; 135: 735–739
  • Heintel D, Kienle D, Shehata M, Krober A, Kroemer E, Schwarzinger I, et al. High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1216–1223
  • Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F, Legarff-Tavernier M, et al. The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 2005; 106: 650–657
  • van't Veer M B, Brooijmans A M, Langerak A W, Verhaaf B, Goudswaard C S, Graveland W J, et al. The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica 2006; 91: 56–63
  • Nuckel H, Huttmann A, Klein-Hitpass L, Schroers R, Fuhrer A, Sellmann L, et al. Lipoprotein lipase expression is a novel prognostic factor in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2006; 47: 1053–1061
  • Bilban M, Heintel D, Scharl T, Woelfel T, Auer M M, Porpaczy E, et al. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia 2006; 20: 1080–1088
  • Rai K R, Peterson B L, Appelbaum F R, Kolitz J, Elias L, Shepherd L, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1750–1757
  • Catovsky D, Richards S, Hillmen P. Early results from LRF CLL4: a UK multicenter randomized trial. Blood 2005; 106: 212a, (Abstract No. 716)
  • Eichhorst B F, Busch R, Hopfinger G, Pasold R, Hensel M, Steinbrecher C, et al. Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood 2006; 107: 885–891
  • Flinn I W, Kumm E, Grever M R, Neuberg D, Dewald G W, Bennett J M, et al. Fludarabine and cyclophosphamide produces a higher complete response rate and more durable remissions than fludarabine in patients with previously untreated CLL: Intergroup trial E2997. Blood 2004; 104: 139a, (Abstract No. 475)
  • Oscier D, Richards S, Orchard J, Davis Z, Best G, Morilla A, et al. Prognostic factors in the UK LRF CLL4 trial. Blood 2005; 106: 594a, (Abstract No. 2099)
  • Grever M R, Lucas D M, Dewald G W, Neuberg D S, Fllinn I W, Tallman M, et al. Outcome of treatment with fludarabine versus fludarabine and cyclophosphamide in chronic lymphocytic leukemia (CLL) is adversely impacted by high risk genetic features: results from ECOG 2997. Blood 2004; 104: 950a, (Abstract No. 3487)
  • Miyashita Y, Shirai K. Clinical determination of the severity of metabolic syndrome: preheparin lipoprotein lipase mass as a new marker of metabolic syndrome. Curr Med Chem Cardiovasc Hematol Agents 2005; 3: 377–381
  • Goodarzi M O, Guo X, Taylor K D, Quinones M J, Saad M F, Yang H, et al. Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes 2004; 53: 214–220
  • Klamut H J, Bosnoyan-Collins L O, Worton R G, Ray P N, Davis H L. Identification of a transcriptional enhancer within muscle intron 1 of the human dystrophin gene. Hum Mol Genet 1996; 5: 1599–1606
  • Ishaq M, DeGray G, Natarajan V. Evidence for the involvement of tyrosine kinase ZAP 70 in nuclear retinoid receptor-dependent transactivation in T lymphocytes. J Biol Chem 2005; 280: 34152–34158
  • Schoonjans K, Peinado-Onsurbe J, Lefebvre A M, Heyman R A, Briggs M, Deeb S, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–5348
  • De Sanctis J B, Blanca I, Bianco N E. Regulatory effects of lipoprotein lipase on proliferative and cytotoxic activity of NK cells. J Lipid Res 1996; 37: 1987–2000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.