178
Views
25
CrossRef citations to date
0
Altmetric
Original Article: Research

Myeloid leukemias express a broad spectrum of VEGF receptors including neuropilin-1 (NRP-1) and NRP-2

, , , , , , , & , M.D. show all
Pages 1997-2007 | Received 30 Mar 2007, Accepted 19 Jun 2007, Published online: 01 Jul 2009

References

  • Estey E H. Prognostic factors in acute myelogenous leukemia. Leukemia 2001; 15: 670–672
  • Kelly L M, Gilliland D G. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198
  • Deininger M W, Goldman J M, Melo J V. The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356
  • Hehlmann R, Berger U, Hochhaus A. Chronic myeloid leukemia: a model for oncology. Ann Hematol 2005; 84: 487–497
  • Bennett J M. The myelodysplastic/myeloproliferative disorders: the interface. Hematol Oncol Clin North Am 2003; 17: 1095–1100
  • Strout M P, Marcucci G, Caligiuri M A, Bloomfield C D. Core-binding factor (CBF) and MLL-associated primary acute myeloid leukemia: biology and clinical implications. Ann Hematol 1999; 78: 251–264
  • Sattler M, Scheijen B, Weisberg E, Griffin J D. Mutated tyrosine kinases as therapeutic targets in myeloid leukemias. Adv Exp Med Biol 2003; 532: 121–140
  • Zhou J, Mauerer K, Farina L, Gribben J G. The role of the tumor microenvironment in hematological malignancies and implication for therapy. Front Biosci 2005; 10: 1581–1596
  • Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, et al. Angiogenesis in acute and chronic leukemias and myelodysplatic syndromes. Blood 2000; 96: 2240–2245
  • Bellamy W, Richter L, Frutiger Y, Grogan T M. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1998; 59: 728–733
  • Bellamy W T, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001; 97: 1427–1434
  • Aguayo A, Kantarjian H M, Estey E H, Giles F J, Verstovsek S, Manshouri T, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002; 95: 1923–1930
  • Brunner B, Gunsilius E, Schumacher P, Zwierzina H, Gastl G, Stauder R. Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Haematother Stem Cell Res 2002; 11: 119–125
  • Ghannadan M, Wimazal F, Simonitsch I, Sperr W R, Mayerhofer M, Sillaber C, et al. Immunohistochemical detection of VEGF in the bone marrow of patients with acute myeloid leukemia. Correlation between VEGF expression and the FAB category. Am J Clin Pathol 2003; 119: 663–671
  • Krauth M T, Simonitsch I, Aichberger K J, Mayerhofer M, Sperr W R, Sillaber C, et al. Immunohistochemical detection of VEGF in the bone marrow of patients with chronic myeloid leukemia and correlation with the phase of disease. Am J Clin Pathol 2004; 121: 473–481
  • Ferrara N, Gerber H P, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676
  • Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovascular Res 2001; 49: 568–581
  • Fons P, Herault J P, Delesque N, Tuyaret J, Bono F, Herbert J M. VEGF-R2 and neuropilin-1 are involved in VEGF-A-induced differentiation of human bone marrow progenitor cells. J Cell Physiol 2004; 200: 351–359
  • Santos C S, Dias S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 2004; 103: 3883–3889
  • Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 2001; 98: 10857–10862
  • Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875
  • Zhang H, Li Y, Li H, Bassi R, Jimenez X, Witte L, et al. Inhibition of both the autocrine and the paracrine growth of human leukemia with a fully human antibody directed against vascular endothelial growth factor receptor 2. Leuk Lymphoma 2004; 45: 1887–1897
  • Verstovsek S, Lunin S, Kantarjian H, Manshouri T, Faderl S, Cortes J, et al. Clinical relevance of VEGF receptors 1 and 2 in patients with chronic myelogenous leukemia. Leuk Res 2003; 27: 661–669
  • Vardiman J W. Chronic myelogenous leukaemia. World Health Organization (WHO) Classification of Tumours. Pathology and Genetics, E S Jaffe, N L Harris, H Stein, J W Vardiman. Tumours of Haematopoietic and Lymphoid Tissues. 2001; 1: 20–26
  • Vardiman J W, Imbert M, Pierre R, Brunning R D, Bain B, Flandrin G, . Chronic myelomonocytic leukemia. World Health Organization (WHO) Classification of Tumours. Pathology and Genetics, E S Jaffe, N L Harris, H Stein, J W Vardiman, et al. Tumours of Haematopoietic and Lymphoid Tissues. 2001; 1: 49–52
  • Brunning R D, Vardiman J W, Matutes E, Bennett J M, Harris N L, Head D, . Acute myeloid leukemia. World Health Organization (WHO) Classification of Tumours. Pathology and Genetics, E S Jaffe, N L Harris, H Stein, J W Vardiman, et al. Tumours of Haematopoietic and Lymphoid Tissues. 2001; 1: 77–105
  • Bennett J M, Catovsky D, Daniel M T, et al. Proposals for the classification of the acute leukaemias. French – American – British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458
  • Mayerhofer M, Aichberger K J, Florian S, Krauth M T, Hauswirth A W, Derdak S, et al. Identification of mTOR as a novel bi-functional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. FASEB J 2005; 19: 960–962
  • Milanini J, Vinals F, Pouyssegur J, Pages G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 1998; 273: 18165–18172
  • Barleon B, Sozzani S, Zhou D, Weich H A, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87: 3336–3343
  • Goan S R, Junghahn I, Wissler M, Becker M, Aumann J, Just U, et al. Donor stromal cells from human blood engraft in NOD/SCID mice. Blood 2000; 96: 3971–3978
  • Beierle E A, Dai W, Langham M R, Jr, Copeland E M, III, Chen M K. Expression of VEGF receptors in cocultured neuroblastoma cells. J Surg Res 2004; 119: 56–65
  • Mayerhofer M, Valent P, Sperr W R, Griffin J D, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1α, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100: 3767–3775
  • Agis H, Krauth M T, Mosberger I, Mullauer L, Simonitsch-Klupp I, Schwartz L B, et al. Enumeration and immunohistochemical characterisation of bone marrow basophils in myeloproliferative disorders using the basophil specific monoclonal antibody 2D7. J Clin Pathol 2006; 59: 396–402
  • Kreuter M, Woelke K, Bieker R, Schliemann C, Steins M, Buechner T, et al. Correlation of neuropilin-1 overexpression to survival in acute myeloid leukemia. Leukemia 2006; 20: 1950–1964
  • Schuch G, Machluf M, Bartsch G, Jr, Nomi M, Richard H, Atala A, et al. In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood 2002; 100: 4622–4628
  • Bachelder R E, Crago A, Chung J, Wendt M A, Shaw L M, Robinson G, et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 2001; 61: 5736–5740
  • Nagata H, Worobec A S, Oh C K, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995; 92: 10560–10564
  • Fritsche-Polanz R, Jordan J H, Feix A, et al. Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis. Br J Haematol 2001; 113: 357–364
  • Akin C, Brockow K, D'Ambrosio C, et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated forms of c-kit. Exp Hematol 2003; 31: 686–692
  • Wimazal F, Jordan J H, Sperr W R, Chott A, Dabbass S, Lechner K, et al. Increased angiogenesis in the bone marrow of patients with systemic mastocytosis. Am J Pathol 2002; 160: 1639–1645
  • Wimazal F, Krauth M T, Vales A, Bohm A, Agis H, Sonneck K, et al. Immunohistochemical detection of vascular endothelial growth factor (VEGF) in the bone marrow in patients with myelodysplastic syndromes: correlation between VEGF expression and the FAB category. Leuk Lymphoma 2006; 47: 451–460

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.