379
Views
23
CrossRef citations to date
0
Altmetric
Original Article: Research

Three-dimensional culturing of the Hodgkin lymphoma cell-line L1236 induces a HL tissue-like gene expression pattern

, , , , , , , , & show all
Pages 2042-2053 | Received 13 Feb 2007, Accepted 13 Jul 2007, Published online: 01 Jul 2009

References

  • Hanahan D, Weinberg R A. The hallmarks of cancer. Cell 2000; 100: 57–70
  • Teti A. Regulation of cellular functions by extracellular matrix. J Am Soc Nephrol 1992; 2: S83–S87
  • Sandberg R, Ernberg I. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci USA 2005; 102: 2052–2057
  • Liu H, Radisky D C, Wang F, Bissell M J. Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 2004; 164: 603–612
  • Wang F, Weaver V M, Petersen O W, Larabell C A, Dedhar S, Briand P, et al. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci USA 1998; 95: 14821–14826
  • Schindler M, Nur E KA, Ahmed I, Kamal J, Liu H Y, Amor N, et al. Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem Biophys 2006; 45: 215–227
  • Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 2005; 15: 405–412
  • Weaver V M, Petersen O W, Wang F, Larabell C A, Briand P, Damsky C, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 1997; 137: 231–245
  • Cukierman E, Pankov R, Stevens D R, Yamada K M. Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708–1712
  • Fournier M V, Martin K J. Transcriptome profiling in clinical breast cancer: From 3D culture models to prognostic signatures. J Cell Physiol 2006; 209: 625–630
  • Marshall N A, Christie L E, Munro L R, Culligan D J, Johnston P W, Barker R N, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004; 103: 1755–1762
  • Sanchez-Aguilera A, Montalban C, de la Cueva P, Sanchez-Verde L, Morente M M, Garcia-Cosio M, et al. Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood 2006; 108: 662–668
  • Axdorph U, Porwit-MacDonald A, Grimfors G, Bjorkholm M. Tissue eosinophilia in relation to immunopathological and clinical characteristics in Hodgkin's disease. Leuk Lymphoma 2001; 42: 1055–1065
  • Grimfors G, Holm G, Mellstedt H, Schnell P O, Tullgren O, Bjorkholm M. Increased blood clearance rate of indium-111 oxine-labeled autologous CD4+ blood cells in untreated patients with Hodgkin's disease. Blood 1990; 76: 583–589
  • Kanzler H, Kuppers R, Hansmann M L, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996; 184: 1495–1505
  • Hertel C B, Zhou X G, Hamilton-Dutoit S J, Junker S. Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene 2002; 21: 4908–4920
  • Ushmorov A, Ritz O, Hummel M, Leithauser F, Moller P, Stein H, et al. Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood 2004; 104: 3326–3334
  • Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S, et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7: 207–215
  • Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003; 101: 1505–1512
  • Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G, et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 2003; 111: 529–537
  • Kanzler H, Hansmann M L, Kapp U, Wolf J, Diehl V, Rajewsky K, et al. Molecular single cell analysis demonstrates the derivation of a peripheral blood-derived cell line (L1236) from the Hodgkin/Reed-Sternberg cells of a Hodgkin's lymphoma patient. Blood 1996; 87: 3429–3436
  • Kamesaki H, Fukuhara S, Tatsumi E, Uchino H, Yamabe H, Miwa H, et al. Cytochemical, immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived from Hodgkin's disease. Blood 1986; 68: 285–292
  • Diehl V, Kirchner H H, Schaadt M, Fonatsch C, Stein H, Gerdes J, et al. Hodgkin's disease: establishment and characterization of four in vitro cell lies. J Cancer Res Clin Oncol 1981; 101: 111–124
  • Wolf J, Kapp U, Bohlen H, Kornacker M, Schoch C, Stahl B, et al. Peripheral blood mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood 1996; 87: 3418–3428
  • Zhang S, Holmes T C, DiPersio C M, Hynes R O, Su X, Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 1995; 16: 1385–1393
  • Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling Peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE 2006; 1: e119
  • Jaffe E S, Harris N L, Stein H, Vardiman J W. Pathology and Genetics of Tumours of Haematopoietic and Lymfoid Tissues. Lyon 2001
  • Axdorph U, Porwit-MacDonald A, Sjoberg J, Grimfors G, Ekman M, Wang W, et al. Epstein-Barr virus expression in Hodgkin's disease in relation to patient characteristics, serum factors and blood lymphocyte function. Br J Cancer 1999; 81: 1182–1187
  • Okuducu A F, Janzen V, Ko Y, Hahne J C, Lu H, Ma Z L, et al. Cellular retinoic acid-binding protein 2 is down-regulated in prostate cancer. Int J Oncol 2005; 27: 1273–1282
  • Eichler G S, Huang S, Ingber D E. Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles. Bioinformatics 2003; 19: 2321–2322
  • Enbom M, Strand A, Falk K I, Linde A. Detection of Epstein-Barr virus, but not human herpesvirus 8, DNA in cervical secretions from Swedish women by real-time polymerase chain reaction. Sex Transm Dis 2001; 28: 300–306
  • Satterwhite E, Sonoki T, Willis T G, Harder L, Nowak R, Arriola E L, et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 2001; 98: 3413–3420
  • Atayar C, Poppema S, Blokzijl T, Harms G, Boot M, van den Berg A. Expression of the T-cell transcription factors, GATA-3 and T-bet, in the neoplastic cells of Hodgkin lymphomas. Am J Pathol 2005; 166: 127–134
  • Das D K. Serous effusions in malignant lymphomas: a review. Diagn Cytopathol 2006; 34: 335–347
  • Karube K, Ohshima K, Suzumiya J, Kawano R, Kikuchi M, Harada M. Gene expression profile of cytokines and chemokines in microdissected primary Hodgkin and Reed-Sternberg (HRS) cells: high expression of interleukin-11 receptor alpha. Ann Oncol 2006; 17: 110–116
  • Buri C, Korner M, Scharli P, Cefai D, Uguccioni M, Mueller C, et al. CC chemokines and the receptors CCR3 and CCR5 are differentially expressed in the nonneoplastic leukocytic infiltrates of Hodgkin disease. Blood 2001; 97: 1543–1548
  • Kapp U, Yeh W C, Patterson B, Elia A J, Kagi D, Ho A, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 1999; 189: 1939–1946
  • Skinnider B F, Elia A J, Gascoyne R D, Trumper L H, von Bonin F, Kapp U, et al. Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2001; 97: 250–255
  • Peh S C, Kim L H, Poppema S. TARC, a CC chemokine, is frequently expressed in classic Hodgkin's lymphoma but not in NLP Hodgkin's lymphoma, T-cell-rich B-cell lymphoma, and most cases of anaplastic large cell lymphoma. Am J Surg Pathol 2001; 25: 925–929
  • Ghosh S, Spagnoli G C, Martin I, Ploegert S, Demougin P, Heberer M, et al. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 2005; 204: 522–531
  • Liu H, Lin J, Roy K. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 2006; 27: 5978–5989
  • Perry S V. Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 2001; 22: 5–49
  • Small J V, Resch G P. The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr Opin Cell Biol 2005; 17: 517–523

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.