178
Views
21
CrossRef citations to date
0
Altmetric
Original Article: Research

A potential role for HSP90 inhibitors in the treatment of JAK2 mutant-positive diseases as demonstrated using quantitative flow cytometry

, , , , , & show all
Pages 2189-2195 | Received 06 Jul 2007, Accepted 31 Jul 2007, Published online: 01 Jul 2009

References

  • Baxter E J, Scott L M, Campbell P J, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061
  • James C, Ugo V, Casadevall N, Constantinescu S N, Vainchenker W. A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. Trends Mol Med 2005; 11: 546–554
  • James C, Ugo V, Le Couedic J P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148
  • Jones A V, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168
  • Kralovics R, Passamonti F, Buser A S, Teo S S, Tiedt R, Passweg J R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790
  • Levine R L, Wadleigh M, Cools J, Ebert B L, Wernig G, Huntly B J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397
  • Steensma D P, Dewald G W, Lasho T L, Powell H L, McClure R F, Levine R L, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 1207–1209
  • Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz S B, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792
  • Schindler C W. Series introduction. JAK-STAT signaling in human disease. J Clin Invest 2002; 109: 1133–1137
  • Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 2005; 102: 18962–18967
  • Nelson M E, Steensma D P. JAK2 V617F in myeloid disorders: what do we know now, and where are we headed?. Leuk Lymphoma 2006; 47: 177–194
  • Argetsinger L S, Kouadio J L, Steen H, Stensballe A, Jensen O N, Carter-Su C. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol 2004; 24: 4955–4967
  • Feener E P, Rosario F, Dunn S L, Stancheva Z, Myers M G, Jr. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol 2004; 24: 4968–4978
  • Ferrajoli A, Faderl S, Ravandi F, Estrov Z. The JAK-STAT pathway: a therapeutic target in hematological malignancies. Curr Cancer Drug Targets 2006; 6: 671–679
  • Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996; 379: 645–648
  • Thompson J E, Cubbon R M, Cummings R T, Wicker L S, Frankshun R, Cunningham B R, et al. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 2002; 12: 1219–1223
  • Thomas X, Campos L, Le Q H, Guyotat D. Heat shock proteins and acute leukemias. Hematology 2005; 10: 225–235
  • Basso A D, Solit D B, Munster P N, Rosen N. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 2002; 21: 1159–1166
  • Jia W, Yu C, Rahmani M, Krystal G, Sausville E A, Dent P, et al. Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood 2003; 102: 1824–1832
  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm M F, Fritz L C, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425: 407–410
  • Mitsiades C S, Mitsiades N S, McMullan C J, Poulaki V, Kung A L, Davies F E, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006; 107: 1092–1100
  • Neckers L, Ivy S P. Heat shock protein 90. Curr Opin Oncol 2003; 15: 419–424
  • Hostein I, Robertson D, DiStefano F, Workman P, Clarke P A. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 2001; 61: 4003–4009
  • Sausville E A, Tomaszewski J E, Ivy P. Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 2003; 3: 377–383
  • Amaravadi R, Thompson C B. The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 2005; 115: 2618–2624
  • Pelicano H, Carew J S, McQueen T J, Andreeff M, Plunkett W, Keating M J, et al. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C. Leukemia 2006; 20: 610–619
  • Yao Q, Nishiuchi R, Kitamura T, Kersey J H. Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia 2005; 19: 1605–1612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.