281
Views
29
CrossRef citations to date
0
Altmetric
Review

Influence of DNA damage and repair upon the risk of treatment related leukemia

&
Pages 204-217 | Received 12 Aug 2007, Accepted 23 Oct 2007, Published online: 01 Jul 2009

References

  • Smith S M, Le Beau M M, Huo D, Karrison T, Sobecks R M, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 2003; 102: 43–52
  • Qian Z, Fernald A A, Godley L A, Larson R A, Le Beau M M. Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002; 99: 14925–14930
  • Pedersen-Bjergaard J, Christiansen D H, Desta F, Andersen M K. Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2006; 20: 1943–1949
  • Leone G, Voso M T, Sica S, Morosetti R, Pagano L. Therapy related leukemias: susceptibility, prevention and treatment. Leuk Lymphoma 2001; 41: 255–276
  • Rund D, Ben-Yehuda D. Therapy-related leukemia and myelodysplasia: evolving concepts of pathogenesis and treatment. Hematology 2004; 9: 179–187
  • Turker A, Guler N. Therapy related acute myeloid leukemia after exposure to 5-fluorouracil: a case report. Hematol Cell Ther 1999; 41: 195–196
  • Tam C S, Seymour J F, Prince H M, Kenealy M, Wolf M, Januszewicz E H, Westerman D. Treatment-related myelodysplasia following fludarabine combination chemotherapy. Haematologica 2006; 91: 1546–1550
  • Khan S G, Muniz-Medina V, Shahlavi T, Baker C C, Inui H, Ueda T, Emmert S, Schneider T D, Kraemer K H. The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res 2002; 30: 3624–3631
  • Vaish M. Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Mol Cancer 2007; 6: 26
  • Rai R, Peng G, Li K, Lin S Y. DNA damage response: the players, the network and the role in tumor suppression. Cancer Genomics Proteomics 2007; 4: 99–106
  • Reese J S, Liu L, Gerson S L. Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 2003; 102: 1626–1633
  • Grossman L, Matanoski G, Farmer E, Hedayati M, Ray S, Trock B, . DNA repair as a susceptibility factor in chronic diseases in human populations. Advances in DNA Damage and Repair, E. DMKA, et al. Kluwer Academic/Plenum Publishers, New York 1999; 149–167
  • Wood R D, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutat Res 2005; 577: 275–283
  • Chaney S G, Sancar A. DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst 1996; 88: 1346–1360
  • Spry M, Scott T, Pierce H, D'Orazio J A. DNA repair pathways and hereditary cancer susceptibility syndromes. Front Biosci 2007; 12: 4191–4207
  • Squire J A, Whitmore G F, Phillips R A. Genetic basis of cancer. The Basic Science of Oncology, I F Tannock, I Tannock, R P Hill. McGraw-Hill Press, New York 1998; 48–78
  • Iliakis G, Wang H, Perrault A R, Boecker W, Rosidi B, Windhofer F, et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 2004; 104: 14–20
  • Chu G. Double strand break repair. J Biol Chem 1997; 272: 24097–24100
  • Goode E L, Ulrich C M, Potter J D. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 2002; 11: 1513–1530
  • Rothkamm K, Kruger I, Thompson L H, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003; 23: 5706–5715
  • Dai Y, Kysela B, Hanakahi L A, Manolis K, Riballo E, Stumm M, et al. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci USA 2003; 100: 2462–2467
  • Arnaudeau C, Lundin C, Helleday T. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 2001; 307: 1235–1245
  • Hortobagyi G N. Anthracyclines in the treatment of cancer. An overview. Drugs 1997; 54(Suppl 4)1–7
  • Felix C A. Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta 1998; 1400: 233–255
  • Pfeiffer P, Goedecke W, Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis 2000; 15: 289–302
  • Larsen A K, Escargueil A E, Skladanowski A. From DNA damage to G2 arrest: the many roles of topoisomerase II. Prog Cell Cycle Res 2003; 5: 295–300
  • Lovett B D, Strumberg D, Blair I A, Pang S, Burden D A, Megonigal M D, et al. Etoposide metabolites enhance DNA topoisomerase II cleavage near leukemia-associated MLL translocation breakpoints. Biochemistry 2001; 40: 1159–1170
  • Stanulla M, Wang J, Chervinsky D S, Aplan P D. Topoisomerase II inhibitors induce DNA double-strand breaks at a specific site within the AML1 locus. Leukemia 1997; 11: 490–496
  • Mistry A R, Felix C A, Whitmarsh R J, Mason A, Reiter A, Cassinat B, et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 2005; 352: 1529–1538
  • Nishiyama M, Arai Y, Tsunematsu Y, Kobayashi H, Asami K, Yabe M, et al. 11p15 translocations involving the NUP98 gene in childhood therapy-related acute myeloid leukemia/myelodysplastic syndrome. Genes Chromosomes Cancer 1999; 26: 215–220
  • Strissel P L, Strick R, Rowley J D, Zeleznik-Le N J. An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood 1998; 92: 3793–3803
  • Tewey K M, Chen G L, Nelson E M, Liu L F. Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 1984; 259: 9182–9187
  • Pedersen-Bjergaard J. Insights into leukemogenesis from therapy-related leukemia. N Engl J Med 2005; 352: 1591–1594
  • Beranek D T, Weis C C, Swenson D H. A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography. Carcinogenesis 1980; 1: 595–606
  • Engelward B P, Allan J M, Dreslin A J, Kelly J D, Wu M M, Gold B, Samson L D. A chemical and genetic approach together define the biological consequences of 3-methyladenine lesions in the mammalian genome. J Biol Chem 1998; 273: 5412–5418
  • Liu L, Nakatsuru Y, Gerson S L. Base excision repair as a therapeutic target in colon cancer. Clin Cancer Res 2002; 8: 2985–2991
  • Chen F X, Zhang Y, Church K M, Bodell W J, Gold B. DNA crosslinking, sister chromatid exchange and cytotoxicity of N-2-chloroethylnitrosoureas tethered to minor groove binding peptides. Carcinogenesis 1993; 14: 935–940
  • Ludlum D B. DNA alkylation by the haloethylnitrosoureas: nature of modifications produced and their enzymatic repair or removal. Mutat Res 1990; 233: 117–126
  • Curtis R E, Boice J D, Jr, Stovall M, Bernstein L, Greenberg R S, Flannery J T, et al. Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N Engl J Med 1992; 326: 1745–1751
  • Povirk L F, Shuker D E. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318: 205–226
  • Hansson J, Lewensohn R, Ringborg U, Nilsson B. Formation and removal of DNA cross-links induced by melphalan and nitrogen mustard in relation to drug-induced cytotoxicity in human melanoma cells. Cancer Res 1987; 47: 2631–2637
  • Worrillow L J, Allan J M. Deregulation of homologous recombination DNA repair in alkylating agent-treated stem cell clones: a possible role in the aetiology of chemotherapy-induced leukaemia. Oncogene 2006; 25: 1709–1720
  • Mamuris Z, Prieur M, Dutrillaux B, Aurias A. The chemotherapeutic drug melphalan induces breakage of chromosomes regions rearranged in secondary leukemia. Cancer Genet Cytogenet 1989; 37: 65–77
  • Andersen M K, Christiansen D H, Pedersen-Bjergaard J. Centromeric breakage and highly rearranged chromosome derivatives associated with mutations of TP53 are common in therapy-related MDS and AML after therapy with alkylating agents: an M-FISH study. Genes Chromosomes Cancer 2005; 42: 358–371
  • Lessard M, Herry A, Berthou C, Leglise M C, Abgrall J F, Morice P, et al. FISH investigation of 5q and 7q deletions in MDS/AML reveals hidden translocations, insertions and fragmentations of the same chromosomes. Leuk Res 1998; 22: 303–312
  • Agarwal S, Tafel A A, Kanaar R. DNA double-strand break repair and chromosome translocations. DNA Repair (Amst) 2006; 5: 1075–1081
  • Drablos F, Feyzi E, Aas P A, Vaagbo C B, Kavli B, Bratlie M S, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan H E. Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair (Amst) 2004; 3: 1389–1407
  • Kobune M, Xu Y, Baum C, Kelley M R, Williams D A. Retrovirus-mediated expression of the base excision repair proteins, formamidopyrimidine DNA glycosylase or human oxoguanine DNA glycosylase, protects hematopoietic cells from N,N′,N″-triethylenethiophosphoramide (thioTEPA)-induced toxicity in vitro and in vivo. Cancer Res 2001; 61: 5116–5125
  • Bol S A, van Steeg H, van Oostrom C T, Tates A D, Vrieling H, de Groot A J, et al. Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo. Mutagenesis 1999; 14: 317–322
  • Krokan H E, Nilsen H, Skorpen F, Otterlei M, Slupphaug G. Base excision repair of DNA in mammalian cells. FEBS Lett 2000; 476: 73–77
  • Ye N, Holmquist G P, O'Connor T R. Heterogeneous repair of N-methylpurines at the nucleotide level in normal human cells. J Mol Biol 1998; 284: 269–285
  • Cabral Neto J B, Cabral R E, Margot A, Le Page F, Sarasin A, Gentil A. Coding properties of a unique apurinic/apyrimidinic site replicated in mammalian cells. J Mol Biol 1994; 240: 416–420
  • Karran P, Offman J, Bignami M. Human mismatch repair, drug-induced DNA damage, and secondary cancer. Biochimie 2003; 85: 1149–1160
  • Seedhouse C, Russell N. Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia. Br J Haematol 2007; 137: 513–529
  • Casorelli I, Offman J, Mele L, Pagano L, Sica S, D'Errico M, et al. Drug treatment in the development of mismatch repair defective acute leukemia and myelodysplastic syndrome. DNA Repair (Amst) 2003; 2: 547–559
  • Ben-Yehuda D, Krichevsky S, Caspi O, Rund D, Polliack A, Abeliovich D, et al. Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood 1996; 88: 4296–4303
  • Sheikhha M H, Tobal K, Liu Yin J A. High level of microsatellite instability but not hypermethylation of mismatch repair genes in therapy-related and secondary acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 2002; 117: 359–365
  • Baumann P, Benson F E, West S C. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 1996; 87: 757–766
  • Bishop D K, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum R R, et al. Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem 1998; 273: 21482–21488
  • Wiese C, Collins D W, Albala J S, Thompson L H, Kronenberg A, Schild D. Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells. Nucleic Acids Res 2002; 30: 1001–1008
  • Sonoda E, Sasaki M S, Buerstedde J M, Bezzubova O, Shinohara A, Ogawa H, et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 1998; 17: 598–608
  • Tebbs R S, Zhao Y, Tucker J D, Scheerer J B, Siciliano M J, Hwang M, et al. Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc Natl Acad Sci USA 1995; 92: 6354–6358
  • Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res 2004; 10: 2675–2680
  • Brem R, Hall J. XRCC1 is required for DNA single-strand break repair in human cells. Nucleic Acids Res 2005; 33: 2512–2520
  • Seedhouse C, Bainton R, Lewis M, Harding A, Russell N, Das-Gupta E. The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 2002; 100: 3761–3766
  • Allan J M, Smith A G, Wheatley K, Hills R K, Travis L B, Hill D A, Swirsky D M, Morgan G J, Wild C P. Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 2004; 104: 3872–3877
  • Smith A G, Worrillow L J, Allan J M. A common genetic variant in XPD associates with risk of 5q- and 7q-deleted acute myeloid leukemia. Blood 2007; 109: 1233–1236
  • Worrillow L J, Travis L B, Smith A G, Rollinson S, Smith A J, Wild C P, et al. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin Cancer Res 2003; 9: 3012–3020
  • Zink D, Mayr C, Janz C, Wiesmuller L. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 2002; 21: 4788–4800
  • Alani E, Lee S, Kane M F, Griffith J, Kolodner R D. Saccharomyces cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J Mol Biol 1997; 265: 289–301
  • Kelly K M, Perentesis J P. Polymorphisms of drug metabolizing enzymes and markers of genotoxicity to identify patients with Hodgkin's lymphoma at risk of treatment-related complications. Ann Oncol 2002; 13(Suppl 1)34–39
  • Allan J M, Wild C P, Rollinson S, Willett E V, Moorman A V, Dovey G J, Roddam P L, Roman E, Cartwright R A, Morgan G J. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 2001; 98: 11592–11597
  • Larson R A, Wang Y, Banerjee M, Wiemels J, Hartford C, Le Beau M M, et al. Prevalence of the inactivating 609C → T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 1999; 94: 803–807
  • Felix C A, Walker A H, Lange B J, Williams T M, Winick N J, Cheung N K, Lovett B D, Nowell P C, Blair I A, Rebbeck T R. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci USA 1998; 95: 13176–13181
  • Rund D, Krichevsky S, Bar-Cohen S, Goldschmidt N, Kedmi M, Malik E, et al. Therapy-related leukemia: clinical characteristics and analysis of new molecular risk factors in 96 adult patients. Leukemia 2005; 19: 1919–1928
  • Blanco J G, Edick M J, Hancock M L, Winick N J, Dervieux T, Amylon M D, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002; 12: 605–611
  • Bolufer P, Collado M, Barragan E, Calasanz M J, Colomer D, Tormo M, et al. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol 2007; 136: 590–596
  • Naoe T, Takeyama K, Yokozawa T, Kiyoi H, Seto M, Uike N, et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res 2000; 6: 4091–4095
  • Hayes J D, Pulford D J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445–600
  • Sasai Y, Horiike S, Misawa S, Kaneko H, Kobayashi M, Fujii H, et al. Genotype of glutathione S-transferase and other genetic configurations in myelodysplasia. Leuk Res 1999; 23: 975–981
  • Woo M H, Shuster J J, Chen C, Bash R O, Behm F G, Camitta B, Felix C A, et al. Glutathione S-transferase genotypes in children who develop treatment-related acute myeloid malignancies. Leukemia 2000; 14: 232–237
  • Davies S M, Robison L L, Buckley J D, Tjoa T, Woods W G, Radloff G A, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol 2001; 19: 1279–1287
  • Jackson S P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002; 23: 687–696
  • Sandoval A, Consoli U, Plunkett W. Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin Cancer Res 1996; 2: 1731–1741
  • Yamauchi T, Nowak B J, Keating M J, Plunkett W. DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophosphamide is inhibited by fludarabine and clofarabine. Clin Cancer Res 2001; 7: 3580–3589
  • Li L, Liu X, Glassman A B, Keating M J, Stros M, Plunkett W, et al. Fludarabine triphosphate inhibits nucleotide excision repair of cisplatin-induced DNA adducts in vitro. Cancer Res 1997; 57: 1487–1494
  • de Vries J F, Falkenburg J H, Willemze R, Barge R M. The mechanisms of Ara-C-induced apoptosis of resting B-chronic lymphocytic leukemia cells. Haematologica 2006; 91: 912–919
  • Kufe D W, Major P P, Egan E M, Beardsley G P. Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem 1980; 255: 8997–8900
  • O'Byrne K J, Philip P A, Propper D J, Braybrooke J P, Saunders M P, Bates N P, et al. A phase II study of the modulation of 5-fluorouracil and folinic acid with high-dose infusional hydroxyurea in metastatic colorectal carcinoma. Ann Oncol 1999; 10: 981–983
  • Wollman M R, Penchansky L, Shekhter-Levin S. Transient 7q- in association with megaloblastic anemia due to dietary folate and vitamin B12 deficiency. J Pediatr Hematol Oncol 1996; 18: 162–165
  • Eto I, Krumdieck C L. Role of vitamin B12 and folate deficiencies in carcinogenesis. Adv Exp Med Biol 1986; 206: 313–330
  • Robien K, Ulrich C M. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol 2003; 157: 571–582
  • Branda R F, Hacker M, Lafayette A, Nigels E, Sullivan L, Nicklas J A, et al. Nutritional folate deficiency augments the in vivo mutagenic and lymphocytotoxic activities of alkylating agents. Environ Mol Mutagen 1998; 32: 33–38
  • Branda R F, Blickensderfer D B. Folate deficiency increases genetic damage caused by alkylating agents and gamma-irradiation in Chinese hamster ovary cells. Cancer Res 1993; 53: 5401–5408
  • Holden S A, Teicher B A, Robinson M F, Northey D, Rosowsky A. Antifolates can potentiate topoisomerase II inhibitors in vitro and in vivo. Cancer Chemother Pharmacol 1995; 36: 165–171
  • Shapiro S, Hughes G, Al-Obaidi M J, O'Reilly E, Ramesh S, Smith J, et al. Acute myeloid leukaemia secondary to treatment with capecitabine for metastatic colorectal cancer. Eur J Haematol 2007; 78: 543–544
  • Linassier C, Barin C, Calais G, Letortorec S, Bremond J L, Delain M, et al. Early secondary acute myelogenous leukemia in breast cancer patients after treatment with mitoxantrone, cyclophosphamide, fluorouracil and radiation therapy. Ann Oncol 2000; 11: 1289–1294
  • de Jonge R, Hooijberg J H, van Zelst B D, Jansen G, van Zantwijk C H, Kaspers G J, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood 2005; 106: 717–720
  • Etienne M C, Formento J L, Chazal M, Francoual M, Magne N, Formento P, et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics 2004; 14: 785–792
  • Frosst P, Blom H J, Milos R, Goyette P, Sheppard C A, Matthews R G, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–113
  • Weisberg I S, Jacques P F, Selhub J, Bostom A G, Chen Z, Curtis Ellison R, et al. The 1298A → C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 2001; 156: 409–415
  • Lievers K J, Boers G H, Verhoef P, den Heijer M, Kluijtmans L A, van der Put N M, et al. A second common variant in the methylenetetrahydrofolate reductase (MTHFR) gene and its relationship to MTHFR enzyme activity, homocysteine, and cardiovascular disease risk. J Mol Med 2001; 79: 522–528
  • Sohn K J, Croxford R, Yates Z, Lucock M, Kim Y I. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst 2004; 96: 134–144
  • Jakobsen A, Nielsen J N, Gyldenkerne N, Lindeberg J. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J Clin Oncol 2005; 23: 1365–1369
  • Shrubsole M J, Shu X O, Ruan Z X, Cai Q, Cai H, Niu Q, et al. MTHFR genotypes and breast cancer survival after surgery and chemotherapy: a report from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 2005; 91: 73–79
  • Guillem V M, Collado M, Terol M J, Calasanz M J, Esteve J, Gonzalez M, et al. Role of MTHFR (677, 1298) haplotype in the risk of developing secondary leukemia after treatment of breast cancer and hematological malignancies. Leukemia 2007; 21: 1413–1422
  • Stam R W, Hubeek I, den Boer M L, Buijs-Gladdines J G, Creutzig U, Kaspers G J, et al. MLL gene rearrangements have no direct impact on Ara-C sensitivity in infant acute lymphoblastic leukemia and childhood M4/M5 acute myeloid leukemia. Leukemia 2006; 20: 179–182
  • Huang Y, Fang Y, Wu J, Dziadyk J M, Zhu X, Sui M, et al. Regulation of Vinca alkaloid-induced apoptosis by NF-kappaB/IkappaB pathway in human tumor cells. Mol Cancer Ther 2004; 3: 271–277
  • Pickell L, Tran P, Leclerc D, Hiscott J, Rozen R. Regulatory studies of murine methylenetetrahydrofolate reductase reveal two major promoters and NF-kappaB sensitivity. Biochim Biophys Acta 2005; 1731: 104–114
  • Collado M, Barragan E, Bolufer P, Calasanz M J, Larrayoz M J, Colomer D, et al. Lack of association of CYP3A4-V polymorphism with the risk of treatment-related leukemia. Leuk Res 2005; 29: 595–597
  • Hake C R, Graubert T A, Fenske T S. Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients?. Bone Marrow Transplant 2007; 39: 59–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.