652
Views
68
CrossRef citations to date
0
Altmetric
Review

Mechanisms of antifolate resistance and methotrexate efficacy in leukemia cells

&
Pages 410-426 | Received 06 Nov 2007, Accepted 24 Nov 2007, Published online: 01 Jul 2009

References

  • Mitchell H K, Snell E E, Williams R J. The concentration of “folic acid”. J Am Chem Soc 1941; 63: 2284
  • Angier R B, Boothe J H, Hutchings B L. Synthesis of a compound identical with the L. Casei factor. Science 1945; 102: 227
  • Heinley R W, Welch A D. Experiments with pteroylglutamic acid and pteroylglutamic acid deficiency in human leukemia. J Clin Invest 1948; 27: 539
  • Farber S, Diamond L K, Mercer R D, Sylvester R F, Wolff J A. Temporary remissions in acute leukemia produced by folic acid antagonist, 4-aminopteroylglutamic acid (aminopterin). N Engl J Med 1948; 238: 787–793
  • Hertz R, Lewis J, Jr, Lipsett M B. Five year's experience with the chemotherapy of metastatic choriocarcinoma and related trophoblastic tumors in women. Am J Obstet Gynecol 1961; 82: 631–640
  • Rustin G J, Rustin F, Dent J, Booth M, Salt S, Bagshawe K D. No increase in second tumors after cytotoxic chemotherapy for gestational trophoblastic tumors. N Engl J Med 1983; 308: 473–476
  • Sonneveld P, Schultz F W, Nooter K, Hahlen K. Pharmacokinetics of methotrexate and 7-hydroxy-methotrexate in plasma and bone marrow of children receiving low-dose oral methotrexate. Cancer Chemother Pharmacol 1986; 18: 111–116
  • Jacobs S A, Stoller R G, Chabner B A, Johns D G. 7-Hydroxymethotrexate as a urinary metabolite in human subjects and rhesus monkeys receiving high dose methotrexate. J Clin Invest 1976; 57: 534–538
  • Donehower R C, Hande K R, Drake J C, Chabner B A. Presence of 2,4-diamino-N10-methylpteroic acid after high-dose methotrexate. Clin Pharmacol Ther 1979; 26: 63–72
  • Evans W E, Pratt C B, Taylor R H, Barker L F, Crom W R. Pharmacokinetic monitoring of high-dose methotrexate. Early recognition of high-risk patients. Cancer Chemother Pharmacol 1979; 3: 161–166
  • Perez C, Wang Y M, Sutow W W, Herson J. Significance of the 48-hour plasma level in high-dose methotrexate regimens. Cancer Clin Trials 1978; 1: 107–111
  • Stoller R G, Hande K R, Jacobs S A, Rosenberg S A, Chabner B A. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med 1977; 297: 630–634
  • Albertioni F, Rask C, Eksborg S, Poulsen J H, Pettersson B, Beck O, et al. Evaluation of clinical assays for measuring high-dose methotrexate in plasma. Clin Chem 1996; 42: 39–44
  • Fotoohi K, Skarby T, Soderhall S, Peterson C, Albertioni F. Interference of 7-hydroxymethotrexate with the determination of methotrexate in plasma samples from children with acute lymphoblastic leukemia employing routine clinical assays. J Chromatogr B Anal Technol Biomed Life Sci 2005; 817: 139–144
  • Skarby T V, Anderson H, Heldrup J, Kanerva J A, Seidel H, Schmiegelow K. High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood acute lymphoblastic leukemia. Leukemia 2006; 20: 1955–1962
  • Exadaktylos P, Reiss T, Schobess R, Hommann M, Hohne S, Beck A. Acute hepatotoxicity with intermediate-dose methotrexate in children with leukemia and non-Hodgkin's lymphoma. Klin Padiatr 1994; 206: 315–318
  • McIntosh S, Davidson D L, O'Brien R T, Pearson H A. Methotrexate hepatotoxicity in children with leukemia. J Pediatr 1977; 90: 1019–1021
  • Perez C, Sutow W W, Wang Y M, Herson J. Evaluation of overall toxicity of high-dosage methotrexate regimens. Med Pediatr Oncol 1979; 6: 219–228
  • Slordal L, Kolmannskog S, Moe P J, Prytz P S, Aarbakke J. High-dose methotrexate therapy (6 – 8 g/m2) in childhood malignancies: clinical tolerability and pharmacokinetics. Pediatr Hematol Oncol 1987; 4: 33–42
  • Fabre G, Fabre I, Matherly L H, Cano J P, Goldman I D. Synthesis and properties of 7-hydroxymethotrexate polyglutamyl derivatives in Ehrlich ascites tumor cells in vitro. J Biol Chem 1984; 259: 5066–5072
  • Fabre G, Matherly L H, Favre R, Catalin J, Cano J P. In vitro formation of polyglutamyl derivatives of methotrexate and 7-hydroxymethotrexate in human lymphoblastic leukemia cells. Cancer Res 1983; 43: 4648–4652
  • Allegra C J, Hoang K, Yeh G C, Drake J C, Baram J. Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate. J Biol Chem 1987; 262: 13520–13526
  • Goldman I D, Lichtenstein N S, Oliverio V T. Carrier-mediated transport of the folic acid analogue, methotrexate, in the L1210 leukemia cell. J Biol Chem 1968; 243: 5007–5017
  • Pao S S, Paulsen I T, Saier M H, Jr. Major facilitator superfamily. Microbiol Mol Biol Rev 1998; 62: 1–34
  • Ferguson P L, Flintoff W F. Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. J Biol Chem 1999; 274: 16269–16278
  • Matherly L H, Angeles S M, Czajkowski C A. Characterization of transport-mediated methotrexate resistance in human tumor cells with antibodies to the membrane carrier for methotrexate and tetrahydrofolate cofactors. J Biol Chem 1992; 267: 23253–23260
  • Dutta B, Huang W, Molero M, Kekuda R, Leibach F H, Devoe L D, et al. Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 1999; 274: 31925–31929
  • Eudy J D, Spiegelstein O, Barber R C, Wlodarczyk B J, Talbot J, Finnell R H. Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol Genet Metab 2000; 71: 581–590
  • Rajgopal A, Edmondnson A, Goldman I D, Zhao R. SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta 2001; 1537: 175–178
  • Goldman I D. The characteristics of the membrane transport of amethopterin and the naturally occurring folates. Ann NY Acad Sci 1971; 186: 400–422
  • Henderson G B, Zevely E M. Anion exchange mechanism for transport of methotrexate in L1210 cells. Biochem Biophys Res Commun 1981; 99: 163–169
  • Zhao R, Gao F, Wang Y, Diaz G A, Gelb B D, Goldman I D. Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells. J Biol Chem 2001; 276: 1114–1118
  • Spinella M J, Brigle K E, Sierra E E, Goldman I D. Distinguishing between folate receptor-alpha-mediated transport and reduced folate carrier-mediated transport in L1210 leukemia cells. J Biol Chem 1995; 270: 7842–7849
  • Goldman I D, Matherly L H. The cellular pharmacology of methotrexate. Pharmacol Ther 1985; 28: 77–102
  • Hill B T, Bailey B D, White J C, Goldman I D. Characteristics of transport of 4-amino antifolates and folate compounds by two lines of L5178Y lymphoblasts, one with impaired transport of methotrexate. Cancer Res 1979; 39: 2440–2446
  • Sirotnak F M, Kurita S, Hutchison D J. On the nature of a transport alteration determining resistance to amethopterin in the L1210 leukemia. Cancer Res 1968; 28: 75–80
  • Jansen G, Mauritz R, Drori S, Sprecher H, Kathmann I, Bunni M, et al. A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 1998; 273: 30189–30198
  • Gorlick R, Goker E, Trippett T, Steinherz P, Elisseyeff Y, Mazumdar M, et al. Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood 1997; 89: 1013–1018
  • Trippett T, Schlemmer S, Elisseyeff Y, Goker E, Wachter M, Steinherz P, et al. Defective transport as a mechanism of acquired resistance to methotrexate in patients with acute lymphocytic leukemia. Blood 1992; 80: 1158–1162
  • Brigle K E, Spinella M J, Sierra E E, Goldman I D. Characterization of a mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. J Biol Chem 1995; 270: 22974–22979
  • Roy K, Tolner B, Chiao J H, Sirotnak F M. A single amino acid difference within the folate transporter encoded by the murine RFC-1 gene selectively alters its interaction with folate analogues. Implications for intrinsic antifolate resistance and directional orientation of the transporter within the plasma membrane of tumor cells. J Biol Chem 1998; 273: 2526–2531
  • Rothem L, Aronheim A, Assaraf Y G. Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. J Biol Chem 2003; 278: 8935–8941
  • Rothem L, Stark M, Assaraf Y G. Impaired CREB-1 phosphorylation in antifolate-resistant cell lines with down-regulation of the reduced folate carrier gene. Mol Pharmacol 2004; 66: 1536–1543
  • Fotoohi K, Jansen G, Assaraf Y G, Rothem L, Stark M, Kathmann I, et al. Disparate mechanisms of antifolate resistance provoked by methotrexate and its metabolite 7-hydroxymethotrexate in leukemia cells: implications for efficacy of methotrexate therapy. Blood 2004; 104: 4194–4201
  • Grant S C, Kris M G, Young C W, Sirotnak F M. Edatrexate, an antifolate with antitumor activity: a review. Cancer Invest 1993; 11: 36–45
  • Sirotnak F M. Determinants of resistance to antifolates: biochemical phenotypes, their frequency of occurrence and circumvention. NCI Monogr 1987; 5: 27–35
  • Abe T, Unno M, Onogawa T, Tokui T, Kondo T N, Nakagomi R, et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 2001; 120: 1689–1699
  • Hakala M T. On the nature of permeability of sarcoma-180 cells to amethopterin in vitro. Biochim Biophys Acta 1965; 102: 210–225
  • Schlemmer S R, Sirotnak F M. Energy-dependent efflux of methotrexate in L1210 leukemia cells. Evidence for the role of an ATPase obtained with inside-out plasma membrane vesicles. J Biol Chem 1992; 267: 14746–14752
  • Schlemmer S R, Sirotnak F M. Structural preferences among folate compounds and their analogues for ATPase-mediated efflux by inside-out plasma membrane vesicles derived from L1210 cells. Biochem Pharmacol 1995; 49: 1427–1433
  • Masuda M, I'Izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni'inuma K, et al. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res 1997; 57: 3506–3510
  • Ito K, Oleschuk C J, Westlake C, Vasa M Z, Deeley R G, Cole S P. Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity. J Biol Chem 2001; 276: 38108–38114
  • Hooijberg J H, Broxterman H J, Kool M, Assaraf Y G, Peters G J, Noordhuis P, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res 1999; 59: 2532–2535
  • Lee K, Klein-Szanto A J, Kruh G D. Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells. J Natl Cancer Inst 2000; 92: 1934–1940
  • Zeng H, Chen Z S, Belinsky M G, Rea P A, Kruh G D. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 2001; 61: 7225–7232
  • Chen Z S, Lee K, Walther S, Raftogianis R B, Kuwano M, Zeng H, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002; 62: 3144–3150
  • Kool M, van der Linden M, de Haas M, Scheffer G L, de Vree J M, Smith A J, et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci USA 1999; 96: 6914–6919
  • Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 1973; 323: 466–483
  • Juliano R L, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455: 152–162
  • Arkin H, Ohnuma T, Kamen B A, Holland J F, Vallabhajosula S. Multidrug resistance in a human leukemic cell line selected for resistance to trimetrexate. Cancer Res 1989; 49: 6556–6561
  • de Graaf D, Sharma R C, Mechetner E B, Schimke R T, Roninson I B. P-glycoprotein confers methotrexate resistance in 3T6 cells with deficient carrier-mediated methotrexate uptake. Proc Natl Acad Sci USA 1996; 93: 1238–1242
  • Gifford A J, Kavallaris M, Madafiglio J, Matherly L H, Stewart B W, Haber M, et al. P-glycoprotein-mediated methotrexate resistance in CCRF-CEM sublines deficient in methotrexate accumulation due to a point mutation in the reduced folate carrier gene. Int J Cancer 1998; 78: 176–181
  • Dietel M, Arps H, Lage H, Niendorf A. Membrane vesicle formation due to acquired mitoxantrone resistance in human gastric carcinoma cell line EPG85-257. Cancer Res 1990; 50: 6100–6106
  • Nakagawa M, Schneider E, Dixon K H, Horton J, Kelley K, Morrow C, et al. Reduced intracellular drug accumulation in the absence of P-glycoprotein (mdr1) overexpression in mitoxantrone-resistant human MCF-7 breast cancer cells. Cancer Res 1992; 52: 6175–6181
  • Taylor C W, Dalton W S, Parrish P R, Gleason M C, Bellamy W T, Thompson F H, et al. Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br J Cancer 1991; 63: 923–929
  • Chen Y N, Mickley L A, Schwartz A M, Acton E M, Hwang J L, Fojo A T. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 1990; 265: 10073–10080
  • Lee J S, Scala S, Matsumoto Y, Dickstein B, Robey R, Zhan Z, et al. Reduced drug accumulation and multidrug resistance in human breast cancer cells without associated P-glycoprotein or MRP overexpression. J Cell Biochem 1997; 65: 513–526
  • Doyle L A, Yang W, Abruzzo L V, Krogmann T, Gao Y, Rishi A K, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95: 15665–15670
  • Volk E L, Rohde K, Rhee M, McGuire J J, Doyle L A, Ross D D, et al. Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Res 2000; 60: 3514–3521
  • Volk E L, Farley K M, Wu Y, Li F, Robey R W, Schneider E. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 2002; 62: 5035–5040
  • Volk E L, Schneider E. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res 2003; 63: 5538–5543
  • Chen Z S, Robey R W, Belinsky M G, Shchaveleva I, Ren X Q, Sugimoto Y, et al. Transport of methotrexate, methotrexate polyglutamates, and 17β-estradiol 17-(β-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 2003; 63: 4048–4054
  • Rhee M S, Schneider E. Lack of an effect of breast cancer resistance protein (BCRP/ABCG2) overexpression on methotrexate polyglutamate export and folate accumulation in a human breast cancer cell line. Biochem Pharmacol 2005; 69: 123–132
  • Kowalski P, Stein U, Scheffer G L, Lage H. Modulation of the atypical multidrug-resistant phenotype by a hammerhead ribozyme directed against the ABC transporter BCRP/MXR/ABCG2. Cancer Gene Ther 2002; 9: 579–586
  • McGuire J J, Bertino J R. Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem 1981; 38: 19–48
  • McBurney M W, Whitmore G F. Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells. Cell 1974; 2: 173–182
  • Jolivet J, Schilsky R L, Bailey B D, Drake J C, Chabner B A. Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J Clin Invest 1982; 70: 351–360
  • Fabre I, Fabre G, Goldman I D. Polyglutamylation, an important element in methotrexate cytotoxicity and selectivity in tumor versus murine granulocytic progenitor cells in vitro. Cancer Res 1984; 44: 3190–3195
  • Shih C, Chen V J, Gossett L S, Gates S B, MacKellar W C, Habeck L L, et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 1997; 57: 1116–1123
  • Sanghani S P, Moran R G. Tight binding of folate substrates and inhibitors to recombinant mouse glycinamide ribonucleotide formyltransferase. Biochemistry 1997; 36: 10506–10516
  • Cowan K H, Jolivet J. A methotrexate-resistant human breast cancer cell line with multiple defects, including diminished formation of methotrexate polyglutamates. J Biol Chem 1984; 259: 10793–10800
  • Li W W, Lin J T, Tong W P, Trippett T M, Brennan M F, Bertino J R. Mechanisms of natural resistance to antifolates in human soft tissue sarcomas. Cancer Res 1992; 52: 1434–1438
  • Lin J T, Tong W P, Trippett T M, Niedzwiecki D, Tao Y, Tan C, Steinherz P, et al. Basis for natural resistance to methotrexate in human acute non-lymphocytic leukemia. Leuk Res 1991; 15: 1191–1196
  • Rodenhuis S, McGuire J J, Narayanan R, Bertino J R. Development of an assay system for the detection and classification of methotrexate resistance in fresh human leukemic cells. Cancer Res 1986; 46: 6513–6519
  • Barredo J C, Synold T W, Laver J, Relling M V, Pui C H, Priest D G, et al. Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood 1994; 84: 564–569
  • Goker E, Kheradpour A, Waltham M, Banerjee D, Tong W P, Elisseyeff Y, et al. Acute monocytic leukemia: a myeloid leukemia subset that may be sensitive to methotrexate. Leukemia 1995; 9: 274–276
  • Argiris A, Longo G S, Gorlick R, Tong W, Steinherz P, Bertino J R. Increased methotrexate polyglutamylation in acute megakaryocytic leukemia (M7) compared to other subtypes of acute myelocytic leukemia. Leukemia 1997; 11: 886–889
  • Longo G S, Gorlick R, Tong W P, Ercikan E, Bertino J R. Disparate affinities of antifolates for folylpolyglutamate synthetase from human leukemia cells. Blood 1997; 90: 1241–1245
  • Jansen G, Schornagel J H, Kathmann I, Westerhof G R, Hordijk G J, van der Laan B F. Measurement of folylpolyglutamate synthetase activity in head and neck squamous carcinoma cell lines and clinical samples using a new rapid separation procedure. Oncol Res 1992; 4: 299–305
  • Chen L, Qi H, Korenberg J, Garrow T A, Choi Y J, Shane B. Purification and properties of human cytosolic folylpoly-γ-glutamate synthetase and organization, localization, and differential splicing of its gene. J Biol Chem 1996; 271: 13077–13087
  • Roy K, Mitsugi K, Sirotnak F M. Additional organizational features of the murine folylpolyglutamate synthetase gene. Two remotely situated exons encoding an alternate 5[prime] end and proximal open reading frame under the control of a second promoter. J Biol Chem 1997; 272: 5587–5593
  • Leclerc G J, Barredo J C. Folylpoly-γ-glutamate synthetase gene mRNA splice variants and protein expression in primary human leukemia cells, cell lines, and normal human tissues. Clin Cancer Res 2001; 7: 942–951
  • Barrueco J R, O'Leary D F, Sirotnak F M. Metabolic turnover of methotrexate polyglutamates in lysosomes derived from S180 cells. Definition of a two-step process limited by mediated lysosomal permeation of polyglutamates and activating reduced sulfhydryl compounds. J Biol Chem 1992; 267: 15356–15361
  • Li W W, Waltham M, Tong W, Schweitzer B I, Bertino J R. Increased activity of γ-glutamyl hydrolase in human sarcoma cell lines: a novel mechanism of intrinsic resistance to methotrexate (MTX). Adv Exp Med Biol 1993; 338: 635–638
  • Rhee M S, Wang Y, Nair M G, Galivan J. Acquisition of resistance to antifolates caused by enhanced γ-glutamyl hydrolase activity. Cancer Res 1993; 53: 2227–2230
  • Pizzorno G, Moroson B A, Cashmore A R, Russello O, Mayer J R, Galivan J, et al. Multifactorial resistance to 5,10-dideazatetrahydrofolic acid in cell lines derived from human lymphoblastic leukemia CCRF-CEM. Cancer Res 1995; 55: 566–573
  • Cole P D, Kamen B A, Gorlick R, Banerjee D, Smith A K, Magill E, et al. Effects of overexpression of γ-Glutamyl hydrolase on methotrexate metabolism and resistance. Cancer Res 2001; 61: 4599–4604
  • Longo G S, Gorlick R, Tong W P, Lin S, Steinherz P, Bertino J R. γ-Glutamyl hydrolase and folylpolyglutamate synthetase activities predict polyglutamylation of methotrexate in acute leukemias. Oncol Res 1997; 9: 259–263
  • Rots M G, Pieters R, Peters G J, Noordhuis P, van Zantwijk C H, Kaspers G J, et al. Role of folylpolyglutamate synthetase and folylpolyglutamate hydrolase in methotrexate accumulation and polyglutamylation in childhood leukemia. Blood 1999; 93: 1677–1683
  • Nimec Z, Galivan J. Regulatory aspects of the glutamylation of methotrexate in cultured hepatoma cells. Arch Biochem Biophys 1983; 226: 671–680
  • Johnson T B, Nair M G, Galivan J. Role of folylpolyglutamate synthetase in the regulation of methotrexate polyglutamate formation in H35 hepatoma cells. Cancer Res 1988; 48: 2426–2431
  • Zhao R, Gao F, Goldman I D. Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochem Pharmacol 2001; 61: 857–865
  • Balinska M. Regulation of methotrexate polyglutaminate formation in Ehrlich ascites carcinoma cells by endogenous folate pool. Acta Biochim Pol 1986; 33: 31–37
  • Balinska M. Rescue effect of exogenous reduced folates on methotrexate polyglutamylation and dihydrofolate reductase activity in L1210 cells. Acta Biochim Pol 1988; 35: 199–205
  • Assaraf Y G, Goldman I D. Loss of folic acid exporter function with markedly augmented folate accumulation in lipophilic antifolate-resistant mammalian cells. J Biol Chem 1997; 272: 17460–17466
  • Dixon K H, Trepel J B, Eng S C, Cowan K H. Folate transport and the modulation of antifolate sensitivity in a methotrexate-resistant human breast cancer cell line. Cancer Commun 1991; 3: 357–365
  • Rothem L, Ifergan I, Kaufman Y, Priest D G, Jansen G, Assaraf Y G. Resistance to multiple novel antifolates is mediated via defective drug transport resulting from clustered mutations in the reduced folate carrier gene in human leukaemia cell lines. Biochem J 2002; 367: 741–750
  • Morgan S L, Baggott J E, Vaughn W H, Austin J S, Veitch T A, Lee J Y, et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo-controlled trial. Ann Intern Med 1994; 121: 833–841
  • Dijkmans B A. Folate supplementation and methotrexate. Br J Rheumatol 1995; 34: 1172–1174
  • Wedge S R, Laohavinij S, Taylor G A, Boddy A, Calvert A H, Newell D R. Clinical pharmacokinetics of the antipurine antifolate (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolic acid (Lometrexol) administered with an oral folic acid supplement. Clin Cancer Res 1995; 1: 1479–1486
  • Calvert H. Folate status and the safety profile of antifolates. Semin Oncol 2002; 29: 3–7
  • Jolivet J, Cowan K H, Curt G A, Clendeninn N J, Chabner B A. The pharmacology and clinical use of methotrexate. N Engl J Med 1983; 309: 1094–1104
  • Alt F W, Kellems R E, Schimke R T. Synthesis and degradation of folate reductase in sensitive and methotrexate-resistant lines of S-180 cells. J Biol Chem 1976; 251: 3063–3674
  • Alt F W, Kellems R E, Bertino J R, Schimke R T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 1978; 253: 1357–1370
  • Srimatkandada S, Medina W D, Cashmore A R, Whyte W, Engel D, Moroson B A, et al. Amplification and organization of dihydrofolate reductase genes in a human leukemic cell line, K-562, resistant to methotrexate. Biochemistry 1983; 22: 5774–5781
  • Schimke R T. Gene amplification in cultured cells. J Biol Chem 1988; 263: 5989–5992
  • Carman M D, Schornagel J H, Rivest R S, Srimatkandada S, Portlock C S, Duffy T, et al. Resistance to methotrexate due to gene amplification in a patient with acute leukemia. J Clin Oncol 1984; 2: 16–20
  • Horns R C, Jr, Dower W J, Schimke R T. Gene amplification in a leukemic patient treated with methotrexate. J Clin Oncol 1984; 2: 2–7
  • Trent J M, Buick R N, Olson S, Horns R C, Jr, Schimke R T. Cytologic evidence for gene amplification in methotrexate-resistant cells obtained from a patient with ovarian adenocarcinoma. J Clin Oncol 1984; 2: 8–15
  • Jackson R C, Hart L I, Harrap K R. Intrinsic resistance to methotrexate of cultured mammalian cells in relation to the inhibition kinetics of their dihydrololate reductases. Cancer Res 1976; 36: 1991–1997
  • Simonsen C C, Levinson A D. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci USA 1983; 80: 2495–2499
  • Melera P W, Davide J P, Hession C A, Scotto K W. Phenotypic expression in Escherichia coli and nucleotide sequence of two Chinese hamster lung cell cDNAs encoding different dihydrofolate reductases. Mol Cell Biol 1984; 4: 38–48
  • Miyachi H, Takemura Y, Kobayashi H, Ando Y. Expression of variant dihydrofolate reductase with decreased binding affinity to antifolates in MOLT-3 human leukemia cell lines resistant to trimetrexate. Cancer Lett 1995; 88: 93–99
  • McIvor R S, Simonsen C C. Isolation and characterization of a variant dihydrofolate reductase cDNA from methotrexate-resistant murine L5178Y cells. Nucleic Acids Res 1990; 18: 7025–7032
  • Van Triest B, Pinedo H M, Giaccone G, Peters G J. Downstream molecular determinants of response to 5-fluorouracil and antifolate thymidylate synthase inhibitors. Ann Oncol 2000; 11: 385–391
  • Welsh S J, Titley J, Brunton L, Valenti M, Monaghan P, Jackman A L, et al. Comparison of thymidylate synthase (TS) protein up-regulation after exposure to TS inhibitors in normal and tumor cell lines and tissues. Clin Cancer Res 2000; 6: 2538–2546
  • Ayusawa D, Koyama H, Seno T. Resistance to methotrexate in thymidylate synthetase-deficient mutants of cultured mouse mammary tumor FM3A cells. Cancer Res 1981; 41: 1497–1501
  • O'Connor B M, Jackman A L, Crossley P H, Freemantle S E, Lunec J, Calvert A H. Human lymphoblastoid cells with acquired resistance to C2-desamino-C2-methyl-N10-propargyl-5,8-dideazafolic acid: a novel folate-based thymidylate synthase inhibitor. Cancer Res 1992; 52: 1137–1143
  • Tong Y, Liu-Chen X, Ercikan-Abali E A, Capiaux G M, Zhao S C, Banerjee D, et al. Isolation and characterization of thymitaq (AG337) and 5-fluoro-2-deoxyuridylate-resistant mutants of human thymidylate synthase from ethyl methanesulfonate-exposed human sarcoma HT1080 cells. J Biol Chem 1998; 273: 11611–11618
  • Kitchens M E, Forsthoefel A M, Barbour K W, Spencer H T, Berger F G. Mechanisms of acquired resistance to thymidylate synthase inhibitors: the role of enzyme stability. Mol Pharmacol 1999; 56: 1063–1070
  • Barbour K W, Hoganson D K, Berger S H, Berger F G. A naturally occurring tyrosine to histidine replacement at residue 33 of human thymidylate synthase confers resistance to 5-fluoro-2[prime]-deoxyuridine in mammalian and bacterial cells. Mol Pharmacol 1992; 42: 242–248
  • Krajinovic M, Costea I, Chiasson S. Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002; 359: 1033–1034
  • Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med 2003; 11: 593–600
  • Rocha J C, Cheng C, Liu W, Kishi S, Das S, Cook E H, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 2005; 105: 4752–4758
  • Tong Y, Liu-Chen X, Ercikan-Abali E A, Zhao S C, Banerjee D, Maley F, et al. Probing the folate-binding site of human thymidylate synthase by site-directed mutagenesis. Generation of mutants that confer resistance to raltitrexed, Thymitaq, and BW1843U89. J Biol Chem 1998; 273: 31209–31214
  • Schwahn B, Rozen R. Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics 2001; 1: 189–201
  • Bailey L B, Gregory J F, III. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr 1999; 129: 919–922
  • Frosst P, Blom H J, Milos R, Goyette P, Sheppard C A, Matthews R G, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–113
  • Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64: 169–172
  • van der Put N M, Gabreels F, Stevens E M, Smeitink J A, Trijbels F J, Eskes T K, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects?. Am J Hum Genet 1998; 62: 1044–1051
  • Taub J W, Matherly L H, Ravindranath Y, Kaspers G J, Rots M G, Zantwijk C H. Polymorphisms in methylenetetrahydrofolate reductase and methotrexate sensitivity in childhood acute lymphoblastic leukemia. Leukemia 2002; 16: 764–765
  • Schmeling H, Biber D, Heins S, Horneff G. Influence of methylenetetrahydrofolate reductase polymorphisms on efficacy and toxicity of methotrexate in patients with juvenile idiopathic arthritis. J Rheumatol 2005; 32: 1832–1836
  • Liani E, Rothem L, Bunni M A, Smith C A, Jansen G, Assaraf Y G. Loss of folylpoly-γ-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int J Cancer 2003; 103: 587–599
  • Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R, Bertino J R. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta 2002; 1587: 164–173
  • Spencer H T, Sorrentino B P, Pui C H, Chunduru S K, Sleep S E, Blakley R L. Mutations in the gene for human dihydrofolate reductase: an unlikely cause of clinical relapse in pediatric leukemia after therapy with methotrexate. Leukemia 1996; 10: 439–446
  • Li W, Fan J, Hochhauser D, Banerjee D, Zielinski Z, Almasan A, et al. Lack of functional retinoblastoma protein mediates increased resistance to antimetabolites in human sarcoma cell lines. Proc Natl Acad Sci USA 1995; 92: 10436–10440
  • Simonian P L, Grillot D A, Nunez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 1997; 90: 1208–1216
  • Yeager T R, Reznikoff C A. Methotrexate resistance in human uroepithelial cells with p53 alterations. J Urol 1998; 159: 581–585
  • Costea I, Moghrabi A, Krajinovic M. The influence of cyclin D1 (CCND1) 870A > G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics 2003; 13: 577–580
  • Krajinovic M, Labuda D, Mathonnet G, Labuda M, Moghrabi A, Champagne J, et al. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res 2002; 8: 802–810
  • Davies S M, Bhatia S, Ross J A, Kiffmeyer W R, Gaynon P S, Radloff G A, et al. Glutathione S-transferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood 2002; 100: 67–71
  • Breithaupt H, Kuenzlen E. Pharmacokinetics of methotrexate and 7-hydroxymethotrexate following infusions of high-dose methotrexate. Cancer Treat Rep 1982; 66: 1733–1741
  • Johns D G, Loo T L. Metabolite of 4-amino-4-deoxy-N10-methylpteroylglutamic acid (methotrexate). J Pharm Sci 1967; 56: 356–359
  • Redetzki H M, Redetzki J E, Elias A L. Resistance of the rabbit tomethotrexate: isolation of a drug metabolite with decreased cytotoxicity. Biochem Pharmacol 1966; 15: 425–433
  • Lankelma J, van der Klein E, Ramaekers F. The role of 7-hydroxymethotrexate during methotrexate anti-cancer therapy. Cancer Lett 1980; 9: 133–142
  • Drake J C, Allegra C J, Baram J, Kaufman B T, Chabner B A. Effects on dihydrofolate reductase of methotrexate metabolites and intracellular folates formed following methotrexate exposure of human breast cancer cells. Biochem Pharmacol 1987; 36: 2416–2418
  • Pinkel D, Hernandez K, Borella L, Holton C, Aur R, Samoy G, et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer 1971; 27: 247–256
  • Evans W E, Relling M V, Rodman J H, Crom W R, Boyett J M, Pui C H. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998; 338: 499–505

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.