240
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Novel anti-myeloma agents and angiogenesis

, , &
Pages 677-689 | Received 04 Oct 2007, Accepted 11 Dec 2007, Published online: 01 Jul 2009

References

  • Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9: 653–660
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31
  • Bergers G, Benjamin L E. Tumourigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3: 401–410
  • Rajkumar S V, Kyle R A. Angiogenesis in multiple myeloma. Semin Oncol 2001; 28: 560–564
  • Rajkumar S V, Mesa R A, Fonseca R, Schroeder G, Plevac M F, Dispenzieri A, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 2002; 8: 2210–2216
  • Sezer O, Niemoller K, Kaufmann O, Eucker J, Jakob C, Zavrski I, et al. Decrease of bone marrow angiogenesis in myeloma patients achieving a remission after chemotherapy. Eur J Haematol 2001; 66: 238–244
  • Rajkumar S V, Leong T, Roche P C, Fonseca R, Dispenzieri A, Lacy M Q, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6: 3111–3116
  • Sezer O, Niemöller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 2000; 79: 574–577
  • Pruneri G, Ponzoni M, Ferreri A J, Decarli N, Tresoldi M, Raggi F, et al. Microvessel density, a surrogate marker of angiogenesis, is significantly related to survival in multiple myeloma patients. Br J Haematol 2002; 118: 817–820
  • Sezer O, Niemoller K, Jakob C, Zavrski I, Heider U, Eucker J, et al. Relationship between bone marrow angiogenesis and plasma cell infiltration and serum b2-microglobulin levels in patients with multiple myeloma. Ann Hematol 2001; 80: 598–601
  • Niemöller K, Jakob C, Heider U, Zavrski I, Eucker J, Kaufmann O, et al. Bone marrow angiogenesis and its correlation with other disease characteristics in multiple myeloma in stage I versus stage II-III. J Cancer Res Clin Oncol 2003; 129: 234–238
  • Jacob C, Sterz J, Zavrski I, Heider U, Kleeberg L, Fleissner C, et al. Angiogenesis in multiple myeloma. Eur J Cancer 2006; 42: 1581–1590
  • Klein B, Zhang X G, Lu Z Y, Bataille R. Interleukin-6 in human multiple myeloma. Blood 1995; 85: 863–872
  • Motro B, Itin A, Sachs L, Keshet E. Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc Natl Acad Sci USA 1989; 87: 3092–3096
  • Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters R M, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000; 95: 2630–2636
  • Houck K A, Ferrara N, Winer J, Cachianes G, Li B, Leung D W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5: 1806–1814
  • Fong G H, Rossant J, Gertsenstein M, Breitman M L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70
  • Shalaby F, Rossant J, Yamaguchi T P, Gertsenstein M, Wu X F, Breitman M L, et al. Failure of blood-island formation and vasculogenesis in Flk-1 – deficient mice. Nature 1995; 376: 62–66
  • Kumar S, Witzig T E, Timm M, Haug J, Wellik L, Fonseca R, et al. Expression of VEGF and its receptors by myeloma cells. Leukemia 2003; 17: 2025–2031
  • Podar K, Tai Y T, Davies F E, Lentzsh S, Sattler M, Hideshima T, et al. Vascular endothelial growth factor triggers signalling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98: 428–435
  • Davis S, Aldrich T H, Jones P F, Acheson A, Compton D L, Jain V, et al. Isolation of angiopoietin-1, a ligant for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–1169
  • Scharpfenecker M, Fiedler U, Reiss Y, Augustin H G. The Tie-2 ligant angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005; 118: 771–780
  • Uneda S, Matsuno F, Sonoki T, Tniguchi I, Kawano F, Hata H. Expression of vascular endothelial factor and angiopoietin-2 in myeloma cells. Haematologica 2003; 88: 113–115
  • Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C, et al. Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 2003; 102: 638–645
  • Nakayama T, Yao L, Tosato C. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 2004; 114: 1317–1325
  • Quartarone E, Alonci A, Allegra A, Bellomo G, Calabro L, D' Angelo A, et al. Differential levels of soluble angiopoietin-2 and Tie-2 in patients with haematological malignancies. Eur J Haematol 2006; 77: 480–485
  • Dimopoulos M A, Anargyrou K, Katodritou E, Kastritis E, Pouli A, Michali E, et al. The ratio of angiopoietin-1 to angiopoietin 2 is reduced and predicts independently for survival in newly diagnosed patients with multiple myeloma. Blood 2007; 110, abstract 493
  • Anagnostopoulos A, Eleftherakis-Papaiakovou V, Zervas K, Kastritis E, Tsionos K, Bamias A, et al. Serum concentrations of angiogenic cytokines in Waldenstrom's Macroglobulinaemia: the ratio of angiopoietin-1 to angiopoietin-2 and angiogenin correlate with disease severity. Br J Haematol 2007; 137: 560–568
  • Anargyrou K, Terpos E, Vassilakopoulos T P, Pouli A, Sachanas S, Tzenou T, et al. Normalization of the serum angiopoietin-1 to angiopoietin-2 ratio reflects response in refractory/resistant multiple myeloma patients treated with bortezomib. Haematologica in press
  • Tello-Montoliu A, Patel J V, Lip G Y. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 2006; 4: 1864–1874
  • Alexandrakis M G, Passam F H, Pappa C A, Sfiridaki K, Tsirakis G, Damilakis J, et al. Relation between bone marrow angiogenesis and serum levels of angiogenin in patients with myelodysplastic syndromes. Leuk Res 2005; 29: 41–46
  • Alexandrakis M G, Passam F H, Sfiridaki A, Kyriakou D S, Petreli E, Roussou P. Elevated serum angiogenin in multiple myeloma. Hematol J 2003; 4: 454–455
  • Derksen P W, Keehnen R M, Evers L M, van Oers M H, Spaargaren M, Pals S T. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 2002; 99: 1405–1410
  • Andersen N F, Standal T, Nielsen J L, Heickendorff L, Borset M, Sorensen F B, et al. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol 2005; 128: 210–217
  • Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M, et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 2003; 101: 2775–2783
  • Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke K, et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 2001; 66: 83–88
  • Hirama M, Takahashi F, Takahashi K, Akutagawa S, Shimizu K, Soma S, et al. Osteopontin overproduced by tumor cells act as a potent angiogenic factor contributing to tumor growth. Cancer Lett 2003; 198: 107–117
  • Colla S, Morandi F, Lazzaretti M, Rizzato R, Lunghi P, Bonomini S, et al. Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia 2005; 19: 2166–2176
  • Terpos E, Mihou D, Szydlo R, Tsimirika K, Karkantaris C, Politou M, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia 2005; 19: 1969–1976
  • Martin S K, Dewar A L, Farrugia A N, Horvath N, Gronthos S, To L B, et al. Tumor angiogenesis is associated with plasma levels of stromal-derived factor-1-alpha in patients with multiple myeloma. Clin Cancer Res 2006; 12: 6973–6977
  • Hayashi T, Hideshima T, Nguyen A N, Munoz O, Podar K, Hamasaki M, et al. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 2004; 10: 7540–7546
  • Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson K C. The role of tumor necrosis factor-alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001; 20: 4519–4527
  • Terpos E, Politou M, Viniou N, Rahemtulla A. Significance of macrophage inflammatory protein-1 alpha (MIP-1alpha) in multiple myeloma. Leuk Lymphoma 2005; 46: 1699–1707
  • Vacca A, Ribatti T, Presta M, Minischetti M, Iurlaro M, Ria R, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999; 93: 3064–3073
  • Vande Broek I, Asosingh K, Allegaert V, Leleu X, Facon T, Vandrkerken K, et al. Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 2004; 18: 976–982
  • Murdoch C, Giannoudis A, Lewis C E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004; 104: 2224–2234
  • Bingle L, Brown N J, Lewis C E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196: 254–265
  • Leek R D, Lewis C E, Whitehouse R, Greenall M, Clarke J, Harris A L. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996; 56: 4625–4629
  • De Palma M, Venneri M A, Galli R. Tie2 identifies hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005; 8: 211–226
  • Pennathur-Das R, Levitt L. Augmentation of in vitro human marrow erythropoiesis under physiological oxygen tensions is mediated by monocytes and T lymphocytes. Blood 1987; 69: 899–907
  • Asosingh K, De Raeve H, De Ridder M, Storme G A, Willems A, Van Riet I, et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 2005; 90: 810–817
  • Meininger C J, Zetter B R. Mast cells and angiogenesis. Semin Cancer Biol 1992; 3: 73–79
  • Gruber B L, Marchese M J, Kew R. Angiogenic factors stimulate mast-cell migration. Blood 1995; 86: 2488–2493
  • Ribatti D, Vacca A, Nico B, Crivellato E, Roncali L, Dammacco F. The role of mast cells in tumour angiogenesis. Br J Haematol 2001; 115: 514–521
  • Ribatti D, Vacca A, Nico B, Quondamatteo F, Ria R, Minischetti M, et al. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 1999; 79: 451–455
  • Nakayama T, Yao L, Tosato G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 2004; 114: 1317–1325
  • D'Amato R J, Loughnan M S, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91: 4082–4085
  • Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341: 1565–1571
  • Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N, et al. Extented survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001; 98: 492–494
  • Dimopoulos M A, Zervas K, Kouvatseas G, Galani E, Grigoraki V, Kiamouris C, et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann Oncol 2001; 12: 991–995
  • Palumbo A, Bertola A, Musto P, Caravita T, Callea V, Nunzi M, et al. Oral melphalan, prednizone and thalidomide for newly diagnosed patients with myeloma. Cancer 2005; 104: 1428–1433
  • Mitsiades N, Mitsiades C S, Poulaki V, Chauhan D, Richardson P G, Hideshima T, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002; 99: 4525–4530
  • Davies F E, Raje N, Hideshima T, Lentzsch S, Young G, Tai Y T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98: 210–216
  • Yaccoby S, Johnson C L, Mahaffey S C, Wezeman M J, Barlogie B, Epstein J. Antimyeloma efficacy of thalidomide in the SCID-hu model. Blood 2002; 100: 4162–4168
  • Fujita J, Mestre J R, Zeldis J B, Subbaramaiah K, Dannenberg A J. Thalidomide and its analogues inhibit lipopolysaccharide-mediated induction of cyclooxygenase-2. Clin Cancer Res 2001; 7: 3349–3355
  • Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M, et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 2005; 23: 5334–5346
  • Neben K, Moehler T, Kraemer A, Benner A, Egerer G, Ho A D, et al. Response to thalidomide in progressive multiple myeloma is not mediated by inhibition of angiogenic cytokine secretion. Br J Haematol 2001; 115: 605–608
  • Dmoszynsca A, Bojarska-Junak A, Domanski D, Rolinski J, Hus M, Soroka-Wojtaszko M. Production of proangiogenic cytokines during thalidomide treatment of multiple myeloma. Leuk Lymph 2002; 43: 401–406
  • Kumar S, Witzig T E, Dispenzieri A, Lacy M Q, Wellik L E, Fonseca R, et al. Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 2004; 18: 624–627
  • Du W, Hattori Y, Hashiguchi A, Kondoh K, Hozumi N, Ikeda Y, et al. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int 2004; 54: 285–294
  • Hatjiharissi E, Terpos E, Papaioannou M, Hatjileontis C, Kaloutsi V, Galaktidou G, et al. The combination of intermediate doses of thalidomide and dexamethasone reduces bone marrow micro-vessel density but not serum levels of angiogenic cytokines in patients with refractory/relapsed multiple myeloma. Hematol Oncol 2004; 22: 159–168
  • Mileshkin L, Honemann D, Gambell P, Trivett M, Hayakawa Y, Smyth M, et al. Patients with multiple myeloma treated with thalidomide: evaluation of clinical parameters, cytokines, angiogenic markers, mast cells and marrow CD57+ cytotoxic T cells as predictors of outcome. Haematologica 2007; 92: 1075–1082
  • Rajkumar S V, Hayman S R, Lacy M Q, Dispenzieri A, Geyer S M, Kabat B, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 2005; 106: 4050–4053
  • Richardson P G, Blood E, Mitsiades C S, Jagannath S, Zeldenrust S, Alsina M, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006; 108: 3458–3464
  • Kastritis E, Dimopoulos M A. The evolving role of lenalidomide in the treatment of hematologic malignancies. Expert Opin Pharmacother 2007; 8: 497–509
  • Lentzsch S, LeBlanc R, Podar K, Davies F, Lin B, Hideshima T, et al. Immunomodulatory analogs of thalidomide inhibit growth of HS Sultan cells and angiogenesis in vivo. Leukemia 2003; 17: 41–44
  • Dredge K, Marriott J B, Macdonald C D, Man H-W, Chen R, Muller G W, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 2002; 87: 1166–1172
  • Dredge K, Horsfall R, Robinson S P, Zhang L H, Lu L, Tang Y, et al. Orally administered lenalidomide (CC-5013) is antiangiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 2005; 69: 56–63
  • Richardson P G, Sonneveld P, Schuster M W, Irwin D, Stadmauer E A, Facon T, et al. Bortezomib or high dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498
  • Rosinol L, Oriol A, Mateos M V, Sureda A, Garcia-Sanchez P, Gutierrez N, et al. Phase II PETHEMA trial of alternating bortezomib and dexamethasone as induction regimen before autologous stem-cell transplantation in younger patients with multiple myeloma: efficacy and clinical implications of tumor response kinetics. J Clin Oncol 2007; 25: 4452–4458
  • Barlogie B, Anaissie E, van Rhee F, Haessler J, Hollmig K, Pineda-Roman M, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 2007; 138: 176–185
  • Almond J B, Cohen G M. The proteasome: a novel target for cancer chemotherapy. Leukemia 2002; 16: 433–443
  • Goldberg A L, Rock K. Not just research tools: proteasome inhibitors offer therapeutic promise. Nat Med 2002; 8: 338–340
  • Hideshima T, Chauhan D, Hayashi T, Akiyama M, Mitsiades N, Mitsiades C, et al. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 2003; 22: 8386–8393
  • Shono T, Ono M, Izumi H, Jimi S I, Matsushima K, Okamato T, et al. Involvement of the transcription factor NF-κB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 1996; 16: 4231–4239
  • Scatena M, Almeida M, Chaisson M L, Fausto N, Nicosia R F, Giachelli C M. NF-κB mediates avβ3 indegrin-induced endothelial cell survival. J Cell Biol 1998; 141: 1083–1093
  • Karl E, Warner K, Zeitlin B, Kaneko T, Wurtzel L, Jin T, et al. Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-κB and CXC chemokines. Cancer Res 2005; 65: 5063–5069
  • Oikawa T, Sasaki T, Nakamura M, Shimamura M, Tanahashi N, Omra S, et al. The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 1998; 8: 243–248
  • Drexler H CA, Risau W, Konerding M A. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 2000; 14: 65–77
  • Roccaro A M, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yashui H, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 2006; 66: 184–191
  • LeBlanc R, Catley L P, Hideshima T, Lentzsch S, Mitsiades C S, Mitsiades N, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62: 4996–5000
  • Politou M, Naresh K, Terpos E, Crawley D, Lampert I, Apperley J F, et al. Anti-angiogenic effect of bortezomib in patients with multiple myeloma. Acta Haematol 2005; 114: 170–173
  • Presta L G, Chen H, O' Connor S J, Chisholm V, Meng Y G, Krummen L, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57: 4593–4599
  • Lin Y S, Nguyen C, Mendoza J L, Escandon E, Fei D, Meng Y G, et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 1999; 288: 371–378
  • Sandler A, Gray R, Perry M C, Brahmer J, Schiller J H, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355: 2542–2550
  • Yang J C, Haworth L, Sherry R M, Hwu P, Shcwartzentruber D J, Topalian S L, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349: 427–434
  • Fong T A, Shawver L K, Sun L, Tang C, App H, Powell T J, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106
  • Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, et al. Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 2004; 10: 3365–3370
  • Wood J M, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, et al. PTK787/ZK222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 2000; 60: 2178–2189
  • Lin B, Podar K, Gupta D, Tai Y T, Li S, Weller E, et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK 787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2002; 62: 5019–5026
  • Wilhelm S M, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 excibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109
  • O'Farrell A M, Abrams T J, Yuen H A, Nqai T J, Louie S G, Yee K W, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003; 101: 3597–3605
  • Mendel D B, Laird A D, Xin X, Louie S G, Christensen J G, Li G, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003; 9: 327–337
  • Wedge S R, Ogilvie D J, Dukes M, Kendrew J, Chester R, Jackson J A, et al. ZD6474 inhibits vascular endothelial growth factor signalling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002; 62: 4646–4655
  • Kovacs M J, Reece D E, Marcellus D, Meyer R M, Mathews S, Dong R P, et al. A phase II study of ZD6474 (Zactima, a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma—NCIC CTG IND.145. Invest New Drugs 2006; 24: 529–535
  • Sorbera L A, Bolos J, Serradell N. Pazopanib hydrochloride. Drugs Future 2006; 31: 585–589
  • Podar K, Tonon G, Sattler M, Tai Y T, LeGouill S, Yasui H, et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA 2006; 103: 19478–19483
  • Prince H M, Hönemann D, Spencer A, Rizzieri D, Stadtmauer E A, Roberts A, et al. VEGF-R inhibition with pazopanib (GW786034) is ineffective in pretreated myeloma. Haematologica 2007; 92: s2, PO-602
  • Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2: 727–739
  • Podar K, Anderson K C. Inhibition of VEGF signalling pathways in multiple myeloma and other malignancies. Cell Cycle 2007; 6: 538–542
  • Browder T, Butterfield C E, Kraling B M, Shi B, Marshall B, O'Reilly M S, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug resistant cancer. Cancer Res 2000; 60: 1878–1886
  • Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin D J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105: R15–R24
  • Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000; 105: 1045–1047
  • Morabito A, DeMaio E, DiMaio M, Normanno N, Perrone F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 2006; 11: 753–764

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.