158
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens

&
Pages 852-863 | Received 05 Dec 2007, Accepted 05 Jan 2008, Published online: 01 Jul 2009

References

  • Small D, Levenstein M, Burrow C, Amin S, Civin C I. STK-1 is expressed in a subpopulation of human bone marrow enriched for CD34+ progenitor/stem cells and in a number of leukemic cell lines. Blood 1992; 80: 296a
  • Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91: 459–463
  • Gu J, Gu X. Natural history and functional divergence of protein tyrosine kinases. Gene 2003; 317: 49–57
  • Levis M, Small D. FLT3: it does matter in leukemia. Leukemia 2003; 17: 1738–1752
  • Hubbard S R. Theme and variations: juxtamembrane regulation of receptor protein kinases. Mol Cell 2001; 8: 481–482
  • Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169–178
  • Dosil M, Wang S, Lemischka I R. Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol 1993; 13: 6572–6585
  • Rosnet O, Buhring H J, deLapeyriere O, Beslu N, Lavagna C, Marchetto S, et al. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 1996; 95: 218–223
  • Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O. FLT3 signaling in hematopoietic cells involves CBL, SHC and an unknown P115 as prominent tyrosine-phosphorylated substrates. Leukemia 1998; 12: 301–310
  • Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O. The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells. J Biol Chem 1998; 273: 14962–14967
  • Zhang S, Mantel C, Broxmeyer H E. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leuk Biol 1999; 65: 372–380
  • Marchetto S, Fournier E, Beslu N, Aurran-Schleinitz T, Dubreuil P, Borg J P, et al. SHC and SHIP phosphorylation and interaction in response to activation of the FLT3 receptor. Leukemia 1999; 13: 1374–1382
  • Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med 2000; 192: 719–728
  • Scheijen B, Ngo H T, Kang H, Griffin J D. FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 2004; 23: 3338–3349
  • Kim K T, Baird K, Ahn J Y, Meltzer P, Lilly M, Levis M, et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 2005; 105: 1759–1767
  • Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173
  • Gotze K S, Ramirez M, Tabor K, Small D, Matthews W, Civin C I. Flt3high and Flt3low CD34+ progenitor cells isolated from human bone marrow are functionally distinct. Blood 1998; 91: 1947–1958
  • Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan J F, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994; 368: 643–648
  • Lyman S D, James L, Johnson L, Brasel K, de Vries P, Escobar S S, et al. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 1994; 83: 2795–2801
  • Mackarehtschian K, Hardin J D, Moore K A, Boast S, Goff S P, Lemischka I R. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995; 3: 147–161
  • McKenna H J, Stocking K L, Miller R E, Brasel K, De Smedt T, Maraskovsky E, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000; 95: 3489–3497
  • Ray R J, Paige C J, Furlonger C, Lyman S D, Rottapel R. Flt3 ligand supports the differentiation of early B cell progenitors in the presence of interleukin-11 and interleukin-7. Eur J Immunol 1996; 26: 1504–1510
  • Veiby O P, Jacobsen F W, Cui L, Lyman S D, Jacobsen S E. The flt3 ligand promotes the survival of primitive hemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta. J Immunol 1996; 157: 2953–2960
  • Broxmeyer H E, Lu L, Cooper S, Ruggieri L, Li Z H, Lyman S D. Flt3 ligand stimulates/costimulates the growth of myeloid stem/progenitor cells. Exp Hematol 1995; 23: 1121–1129
  • Hirayama F, Lyman S D, Clark S C, Ogawa M. The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors. Blood 1995; 85: 1762–1768
  • Nicholls S E, Winter S, Mottram R, Miyan J A, Whetton A D. Flt3 ligand can promote survival and macrophage development without proliferation in myeloid progenitor cells. Exp Hematol 1999; 27: 663–672
  • Sitnicka E, Buza-Vidas N, Larsson S, Nygren J M, Liuba K, Jacobsen S E. Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood 2003; 102: 881–886
  • Meierhoff G, Dehmel U, Gruss H J, Rosnet O, Birnbaum D, Quentmeier H, et al. Expression of FLT3 receptor and FLT3-ligand in human leukemia-lymphoma cell lines. Leukemia 1995; 9: 1368–1372
  • Drexler H G. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996; 10: 588–599
  • Carow C E, Levenstein M, Kaufmann S H, Chen J, Amin S, Rockwell P, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089–1096
  • Birg F, Courcoul M, Rosnet O, Bardin F, Pebusque M J, Marchetto S, et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood 1992; 80: 2584–2593
  • Rosnet O, Buhring H J, Marchetto S, Rappold I, Lavagna C, Sainty D, et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996; 10: 238–248
  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918
  • Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337
  • Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563
  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439
  • Abu-Duhier F M, Goodeve A C, Wilson G A, Care R S, Peake I R, Reilly J T. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001; 113: 983–988
  • Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080
  • Rombouts W J, Blokland I, Lowenberg B, Ploemacher R E. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683
  • Abu-Duhier F M, Goodeve A C, Wilson G A, Gari M A, Peake I R, Rees D C, et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000; 111: 190–195
  • Stirewalt D L, Kopecky K J, Meshinchi S, Appelbaum F R, Slovak M L, Willman C L, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595
  • Kottaridis P D, Gale R E, Frew M E, Harrison G, Langabeer S E, Belton A A, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759
  • Whitman S P, Archer K J, Feng L, Baldus C, Becknell B, Carlson B D, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–7239
  • Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 1999; 13: 38–43
  • Xu F, Taki T, Yang H W, Hanada R, Hongo T, Ohnishi H, et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol 1999; 105: 155–162
  • Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999; 33: 525–529
  • Meshinchi S, Woods W G, Stirewalt D L, Sweetser D A, Buckley J D, Tjoa T K, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94
  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335
  • Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66
  • Boissel N, Cayuela J M, Preudhomme C, Thomas X, Grardel N, Fund X, et al. Prognostic significance of FLT3 internal tandem repeat in patients with de novo acute myeloid leukemia treated with reinforced courses of chemotherapy. Leukemia 2002; 16: 1699–1704
  • Levis M, Small D. FLT3 tyrosine kinase inhibitors. Int J Hematol 2005; 82: 100–107
  • Levis M, Allebach J, Tse K F, Zheng R, Baldwin B R, Smith B D, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99: 3885–3891
  • Weisberg E, Boulton C, Kelly L M, Manley P, Fabbro D, Meyer T, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443
  • O'Farrell A M, Abrams T J, Yuen H A, Ngai T J, Louie S G, Yee K W, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003; 101: 3597–3605
  • Yee K W, O'Farrell A M, Smolich B D, Cherrington J M, McMahon G, Wait C L, et al. SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase. Blood 2002; 100: 2941–2949
  • Kelly L M, Yu J C, Boulton C L, Apatira M, Li J, Sullivan C M, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1: 421–432
  • Levis M, Tse K F, Smith B D, Garrett E, Small D. A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood 2001; 98: 885–887
  • Tse K F, Novelli E, Civin C I, Bohmer F D, Small D. Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia 2001; 15: 1001–1010
  • Patyna S, Laird A D, Mendel D B, O'Farrell A M, Liang C, Guan H, et al. SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol Cancer Ther 2006; 5: 1774–1782
  • Albert D H, Tapang P, Magoc T J, Pease L J, Reuter D R, Wei R Q, et al. Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther 2006; 5: 995–1006
  • Nishiyama U, Yoshino T, Ozai M, Yoshioka R, Fujisawa M, Ogasawara Y, et al. Antineoplastic effect of a single oral dose of the novel Flt3 inhibitor KRN383 on xenografted human leukemic cells harboring Flt3-activating mutations. Leuk Res 2006; 30: 1541–1546
  • Zeng Z, Samudio I J, Zhang W, Estrov Z, Pelicano H, Harris D, et al. Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 2006; 66: 3737–3746
  • Sohal J, Phan V T, Chan P V, Davis E M, Patel B, Kelly L M, et al. A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 2003; 101: 3188–3197
  • Lopes de Menezes D E, Peng J, Garrett E N, Louie S G, Lee S H, Wiesmann M, et al. CHIR-258: a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. Clin Cancer Res 2005; 11: 5281–5291
  • Komeno Y, Kurokawa M, Imai Y, Takeshita M, Matsumura T, Kubo K, et al. Identification of Ki23819, a highly potent inhibitor of kinase activity of mutant FLT3 receptor tyrosine kinase. Leukemia 2005; 19: 930–935
  • Gazit A, Yee K, Uecker A, Bohmer F D, Sjoblom T, Ostman A, et al. Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit. Bioorg Med Chem 2003; 11: 2007–2018
  • Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H, et al. Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem 2003; 278: 32892–32898
  • Mahboobi S, Teller S, Pongratz H, Hufsky H, Sellmer A, Botzki A, et al. Bis(1H-2-indolyl)methanones as a novel class of inhibitors of the platelet-derived growth factor receptor kinase. J Med Chem 2002; 45: 1002–1018
  • Pine P, Bahjat R, Chang B, Taylor V, Markovstov V, Hitoshi Y, et al. An Orally Bioavailable Inhibitor of FLT3 and Syk Kinases Prevents Tumor Growth in Subcutaneously Implanted Human Tumor Xenografts and Promotes Cell Death of FLT3 Mutant AML Cells. Blood 2005; 106: 74a
  • Wilhelm S M, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109
  • Griessinger E, Imbert V, Lagadec P, Gonthier N, Dubreuil P, Romanelli A, et al. AS602868, a dual inhibitor of IKK2 and FLT3 to target AML cells. Leukemia 2007; 21: 877–885
  • Kiyoi H, Shiotsu Y, Ozeki K, Yamaji S, Kosugi H, Umehara H, et al. A novel FLT3 inhibitor FI-700 selectively suppresses the growth of leukemia cells with FLT3 mutations. Clin Cancer Res 2007; 13(15 Part 1)4575–4582
  • Shiotsu Y, Kiyoi H, Ozeki K, Umehara H, Shimizu M, Akinaga S, et al. KW-2449, a novel multi-kinase inhibitor against FLT3, Abl, FGFR1 and Aurora, suppresses the growth of AML both in vitro and in vivo. Blood 2007; 118: 542a
  • Giles F J, Stopeck A T, Silverman L R, Lancet J E, Cooper M A, Hannah A L, et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003; 102: 795–801
  • O'Farrell A M, Foran J M, Fiedler W, Serve H, Paquette R L, Cooper M A, et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 2003; 9: 5465–5476
  • Smith B D, Levis M, Beran M, Giles F, Kantarjian H, Berg K, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676
  • Stone R M, DeAngelo D J, Klimek V, Galinsky I, Estey E, Nimer S D, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60
  • DeAngelo D J, Stone R M, Heaney M L, Nimer S D, Paquette R L, Klisovic R B, et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 2006; 108: 3674–3681
  • Lamers M B, Antson A A, Hubbard R E, Scott R K, Williams D H. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. J Mol Biol 1999; 285: 713–725
  • Bohmer F D, Karagyozov L, Uecker A, Serve H, Botzki A, Mahboobi S, et al. A single amino acid exchange inverts susceptibility of related receptor tyrosine kinases for the ATP site inhibitor STI-571. J Biol Chem 2003; 278: 5148–5155
  • Nagar B, Bornmann W G, Pellicena P, Schindler T, Veach D R, Miller W T, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002; 62: 4236–4243
  • Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J. Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood 2003; 102: 646–651
  • Knapper S, Burnett A K, Littlewood T, Kell W J, Agrawal S, Chopra R, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006; 108: 3262–3270
  • Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007
  • Avramis I A, Laug W E, Sausville E A, Avramis V I. Determination of drug synergism between the tyrosine kinase inhibitors NSC 680410 (adaphostin) and/or STI571 (imatinib mesylate, Gleevec) with cytotoxic drugs against human leukemia cell lines. Cancer Chemother Pharmacol 2003; 52: 307–318
  • Thomas D A, Faderl S, Cortes J, O'Brien S, Giles F J, Kornblau S M, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood 2004; 103: 4396–4407
  • Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol 2006; 24: 460–466
  • Wassmann B, Pfeifer H, Goekbuget N, Beelen D W, Beck J, Stelljes M, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2006; 108: 1469–1477
  • George D J, Dionne C A, Jani J, Angeles T, Murakata C, Lamb J, et al. Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res 1999; 59: 2395–2401
  • Levis M, Brown P, Smith B D, Stine A, Pham R, Stone R, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood 2006; 108: 3477–3483
  • Levis M, Pham R, Smith B D, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 2004; 104: 1145–1150
  • Brown P, Levis M, McIntyre E, Griesemer M, Small D. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia 2006; 20: 1368–1376
  • Mendel D B, Laird A D, Xin X, Louie S G, Christensen J G, Li G, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003; 9: 327–337
  • Yee K W, Schittenhelm M, O'Farrell A M, Town A R, McGreevey L, Bainbridge T, et al. Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood 2004; 104: 4202–4209
  • Pandey A, Volkots D L, Seroogy J M, Rose J W, Yu J C, Lambing J L, et al. Identification of orally active, potent, and selective 4-piperazinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family. J Med Chem 2002; 45: 3772–3793
  • Griswold I J, Shen L J, La Rosee P, Demehri S, Heinrich M C, Braziel R M, et al. Effects of MLN518, a dual FLT3 and KIT inhibitor, on normal and malignant hematopoiesis. Blood 2004; 104: 2912–2918
  • Mollgard L, Deneberg S, Nahi H, Bengtzen S, Jonsson-Videsater K, Fioretos T, et al. The FLT3 inhibitor PKC412 in combination with cytostatic drugs in vitro in acute myeloid leukemia. Cancer Chemother Pharmacol, Epub ahead of print. 2007
  • Propper D J, McDonald A C, Man A, Thavasu P, Balkwill F, Braybrooke J P, et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol 2001; 19: 1485–1492
  • Furukawa Y, Vu H A, Akutsu M, Odgerel T, Izumi T, Tsunoda S, et al. Divergent cytotoxic effects of PKC412 in combination with conventional antileukemic agents in FLT3 mutation-positive versus -negative leukemia cell lines. Leukemia 2007; 21: 1005–1014
  • Rahmani M, Davis E M, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 2005; 280: 35217–35227
  • Rosato R R, Almenara J A, Coe S, Grant S. The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res 2007; 67: 9490–9500
  • Lierman E, Lahortiga I, Van Miegroet H, Mentens N, Marynen P, Cools J. The ability of sorafenib to inhibit oncogenic PDGFRbeta and FLT3 mutants and overcome resistance to other small molecule inhibitors. Haematologica 2007; 92: 27–34
  • Kancha R K, Grundler R, Peschel C, Duyster J. Sensitivity toward sorafenib and sunitinib varies between different activating and drug-resistant FLT3-ITD mutations. Exp Hematol 2007; 35: 1522–1526
  • Auclair D, Miller D, Yatsula V, Pickett W, Carter C, Chang Y, et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 2007; 21: 439–445
  • Yu C, Friday B B, Lai J P, Yang L, Sarkaria J, Kay N E, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 2006; 5: 2378–2387
  • Dasmahapatra G, Yerram N, Dai Y, Dent P, Grant S. Synergistic interactions between vorinostat and sorafenib in chronic myelogenous leukemia cells involve Mcl-1 and p21CIP1 down-regulation. Clin Cancer Res 2007; 13: 4280–4290
  • Shankar D B, Li J, Tapang P, Owen McCall J, Pease L J, Dai Y, et al. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood 2007; 109: 3400–3408
  • Zhou J, Pan M, Xie Z, Loh S L, Bi C, Tai Y C, et al. Synergistic antileukemic effects between ABT-869 and chemotherapy involve downregulation of cell cycle-regulated genes and c-Mos-mediated MAPK pathway. Leukemia 2008; 22: 138–146
  • Kappelmayer J, Udvardy M, Antal-Szalmas P. Pgp and FLT3: identification and modulation of two proteins that lead to chemotherapy resistance in acute myeloid leukemia. Curr Med Chem 2007; 14: 519–530
  • List A F, Kopecky K J, Willman C L, Head D R, Persons D L, Slovak M L, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001; 98: 3212–3220
  • Perrotton T, Trompier D, Chang X B, Di Pietro A. Baubichon-Cortay H (R)- and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1. J Biol Chem 2007; 282: 31542–31548
  • Hunter H M, Pallis M, Seedhouse C H, Grundy M, Gray C, Russell N H. The expression of P-glycoprotein in AML cells with FLT3 internal tandem duplications is associated with reduced apoptosis in response to FLT3 inhibitors. Br J Haematol 2004; 127: 26–33
  • Fournier T, Medjoubi N N, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta 2000; 1482: 157–171
  • Kretz O, Weiss H M, Schumacher M M, Gross G. In vitro blood distribution and plasma protein binding of the tyrosine kinase inhibitor imatinib and its active metabolite, CGP74588, in rat, mouse, dog, monkey, healthy humans and patients with acute lymphatic leukaemia. Br J Clin Pharmacol 2004; 58: 212–216
  • McKillop D, Hutchison M, Partridge E A, Bushby N, Cooper C M, Clarkson-Jones J A, et al. Metabolic disposition of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat, dog and man. Xenobiotica 2004; 34: 917–934
  • Chassany O, Urien S, Claudepierre P, Bastian G, Tillement J P. Comparative serum protein binding of anthracycline derivatives. Cancer Chemother Pharmacol 1996; 38: 571–573
  • Powell B L, White J C, Gregory B W, Brockschmidt J K, Rhinehardt-Clark A, Lyerly E S, et al. S-phase fraction is not correlated with nucleoside transport in acute myeloid leukemia cells. Leukemia 1991; 5: 598–601
  • Zhao M, Rudek M A, He P, Hafner F T, Radtke M, Wright J J, et al. A rapid and sensitive method for determination of sorafenib in human plasma using a liquid chromatography/tandem mass spectrometry assay. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846: 1–7
  • Fleischman R A, Mintz B. Prevention of genetic anemias in mice by microinjection of normal hematopoietic stem cells into the fetal placenta. Proc Natl Acad Sci USA 1979; 76: 5736–5740
  • Amadori S, Arcese W, Isacchi G, Meloni G, Petti M C, Monarca B, et al. Mitoxantrone etoposide, and intermediate-dose cytarabine: an effective and tolerable regimen for the treatment of refractory acute myeloid leukemia. J Clin Oncol 1991; 9: 1210–1214
  • Mayer R J, Davis R B, Schiffer C A, Berg D T, Powell B L, Schulman P, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 1994; 331: 896–903
  • Levis M, Smith B D, Beran M, Baer M R, Erba H P, Cripe L, et al. A Randomized, open-label study of lestaurtinib (CEP-701), an oral FLT3 inhibitor, administered in sequence with chemotherapy in patients with relapsed AML harboring FLT3 activating mutations: clinical response correlates with successful FLT3 inhibition. Blood 2005; 106: 121a
  • Giles F, Schiffer C, Kantarjian H, Fischer J T, Paquette R, Pelov D, et al. Phase 1 study of PKC412, an oral FLT3 kinase inhibitor, in sequential and concomitant combinations with daunorubicin and cytarabine (DA) induction and high-dose cytarabine (HDAra-C) consolidation in newly diagnosed patients with AML. Blood 2004; 104: 262a
  • Stone R M, Fischer T, Paquette R, Gary Schiller C AS, Ehninger G, Cortes J, et al. Phase IB study of PKC412, an oral FLT3 kinase inhibitor, in sequential and simultaneous combinations with daunorubicin and cytarabine (DA) induction and high-dose cytarabine consolidation in newly diagnosed patients with AML. Blood 2005; 106: 121a
  • Deangelo D, Amrein P C, Kovacsovics T J, Klisovic R B, Powell B L, Cooper M A, et al. Phase 1/2 study of tandutinib (MLN518) plus standard induction chemotherapy in newly diagnosed acute myelogenous leukemia (AML). Blood 2006; 108: 51a
  • Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann O G, O'Farrell A M, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105: 986–993
  • Quintas-Cardama A, Kantarjian H, Andreef M, Faderl S, Wright J J, Zhang W, et al. Phase I trial of intermittent administration of sorafenib (BAY 43-9006) for patients (pts) with refractory/relapsed acute myelogenous leukemia (AML). J Clin Oncol 2007; 25: 7018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.