1,021
Views
64
CrossRef citations to date
0
Altmetric
Review

JAK and MPL mutations in myeloid malignancies

Pages 388-397 | Received 31 Dec 2007, Accepted 05 Jan 2008, Published online: 01 Jul 2009

References

  • Vardiman J W, Harris N L, Brunning R D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302
  • Tefferi A, Vardiman J W. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22
  • Tefferi A. The history of myeloproliferative disorders: before and after Dameshek. Leukemia 2008; 22: 3–13
  • Levine R L, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397
  • James C, Ugo V, Le Couedic J P, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148
  • Kralovics R, Passamonti F, Buser A S, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790
  • Baxter E J, Scott L M, Campbell P J, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061
  • Pikman Y, Lee B H, Mercher T, et al. MPLW515L Is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270
  • Scott L M, Tong W, Levine R L, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468
  • Walters D K, Mercher T, Gu T L, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006; 10: 65–75
  • Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 2002; 277: 47954–47963
  • Feener E P, Rosario F, Dunn S L, Stancheva Z, Myers M G, Jr. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol 2004; 24: 4968–4978
  • Schindler C, Levy D E, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007; 282: 20059–20063
  • Boggon T J, Li Y, Manley P W, Eck M J. Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood 2005; 106: 996–1002
  • Mertens C, Darnell J E, Jr. SnapShot: JAK-STAT signaling. Cell 2007; 131: 612
  • Huang L J, Constantinescu S N, Lodish H F. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 2001; 8: 1327–1338
  • Starr R, Hilton D J. Negative regulation of the JAK/STAT pathway. Bioessays 1999; 21: 47–52
  • Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003; 3: 900–911
  • Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 2000; 275: 29338–29347
  • Stofega M R, Herrington J, Billestrup N, Carter-Su C. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B. Mol Endocrinol 2000; 14: 1338–1350
  • Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93: 385–395
  • Krempler A, Qi Y, Triplett A A, Zhu J, Rui H, Wagner K U. Generation of a conditional knockout allele for the Janus kinase 2 (Jak2) gene in mice. Genesis 2004; 40: 52–57
  • Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998; 93: 397–409
  • Rodig S J, Meraz M A, White J M, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998; 93: 373–383
  • Nosaka T, van Deursen J M, Tripp R A, et al. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802
  • Shimoda K, Kato K, Aoki K, et al. Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity 2000; 13: 561–571
  • Shimoda K, Tsutsui H, Aoki K, et al. Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood 2002; 99: 2094–2099
  • Rane S G, Mangan J K, Amanullah A, et al. Activation of the Jak3 pathway is associated with granulocytic differentiation of myeloid precursor cells. Blood 2002; 100: 2753–2762
  • Mangan J K, Rane S G, Kang A D, Amanullah A, Wong B C, Reddy E P. Mechanisms associated with IL-6-induced up-regulation of Jak3 and its role in monocytic differentiation. Blood 2004; 103: 4093–4101
  • Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377: 65–68
  • Russell S M, Tayebi N, Nakajima H, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 1995; 270: 797–800
  • Russell S M, Johnston J A, Noguchi M, et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 1994; 266: 1042–1045
  • Mella P, Schumacher R F, Cranston T, de Saint Basile G, Savoldi G, Notarangelo L D. Eleven novel JAK3 mutations in patients with severe combined immunodeficiency-including the first patients with mutations in the kinase domain. Hum Mutat 2001; 18: 355–356
  • Puck J M, Deschenes S M, Porter J C, et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet 1993; 2: 1099–1104
  • Schmalstieg F C, Goldman A S. Immune consequences of mutations in the human common gamma-chain gene. Mol Genet Metab 2002; 76: 163–171
  • Higuchi M, Asao H, Tanaka N, et al. Dispensability of Jak1 tyrosine kinase for interleukin-2-induced cell growth signaling in a human T cell line. Eur J Immunol 1996; 26: 1322–1327
  • Nicholson S E, Oates A C, Harpur A G, Ziemiecki A, Wilks A F, Layton J E. Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc Natl Acad Sci USA 1994; 91: 2985–2988
  • Shimoda K, Feng J, Murakami H, et al. Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood 1997; 90: 597–604
  • Tanaka N, Asao H, Ohbo K, et al. Physical association of JAK1 and JAK2 tyrosine kinases with the interleukin 2 receptor beta and gamma chains. Proc Natl Acad Sci USA 1994; 91: 7271–7275
  • Ogata N, Kouro T, Yamada A, et al. JAK2 and JAK1 constitutively associate with an interleukin-5 (IL-5) receptor alpha and betac subunit, respectively, and are activated upon IL-5 stimulation. Blood 1998; 91: 2264–2271
  • Guschin D, Rogers N, Briscoe J, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. Embo J 1995; 14: 1421–1429
  • Muller M, Briscoe J, Laxton C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature 1993; 366: 129–135
  • Minegishi Y, Saito M, Morio T, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006; 25: 745–755
  • Harpur A G, Andres A C, Ziemiecki A, Aston R R, Wilks A F. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 1992; 7: 1347–1353
  • Argetsinger L S, Campbell G S, Yang X, et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 1993; 74: 237–244
  • Witthuhn B A, Quelle F W, Silvennoinen O, et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 1993; 74: 227–236
  • Silvennoinen O, Witthuhn B A, Quelle F W, Cleveland J L, Yi T, Ihle J N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 1993; 90: 8429–8433
  • Watling D, Guschin D, Muller M, et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature 1993; 366: 166–170
  • Sandberg E M, Wallace T A, Godeny M D, Vonderlinden D, Sayeski P P. Jak2 tyrosine kinase: a true jak of all trades?. Cell Biochem Biophys 2004; 41: 207–232
  • Kotenko S V, Izotova L S, Pollack B P, et al. Other kinases can substitute for Jak2 in signal transduction by interferon-gamma. J Biol Chem 1996; 271: 17174–17182
  • Kiyoi H, Yamaji S, Kojima S, Naoe T. JAK3 mutations occur in acute megakaryoblastic leukemia both in Down syndrome children and non-Down syndrome adults. Leukemia 2007; 21: 574–576
  • Norton A, Fisher C, Liu H, et al. Analysis of JAK3, JAK2, and C-MPL mutations in transient myeloproliferative disorder and myeloid leukemia of Down syndrome blasts in children with Down syndrome. Blood 2007; 110: 1077–1079
  • De Vita S, Mulligan C, McElwaine S, et al. Loss-of-function JAK3 mutations in TMD and AMKL of Down syndrome. Br J Haematol 2007; 137: 337–341
  • Peeters P, Raynaud S D, Cools J, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90: 2535–2540
  • Lacronique V, Boureux A, Valle V D, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312
  • Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005; 65: 2662–2667
  • Murati A, Gelsi-Boyer V, Adelaide J, et al. PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. Leukemia 2005; 19: 1692–1696
  • Bousquet M, Quelen C, De Mas V, et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005; 24: 7248–7252
  • Adelaide J, Perot C, Gelsi-Boyer V, et al. A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia 2006; 20: 536–537
  • Griesinger F, Hennig H, Hillmer F, et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 2005; 44: 329–333
  • Carron C, Cormier F, Janin A, et al. TEL-JAK2 transgenic mice develop T-cell leukemia. Blood 2000; 95: 3891–3899
  • dos Santos N R, Ghysdael J. A transgenic mouse model for TEL-JAK2-induced B-cell lymphoma/leukemia. Leukemia 2006; 20: 182–185
  • Kennedy J A, Barabe F, Patterson B J, et al. Expression of TEL-JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo. Proc Natl Acad Sci USA 2006; 103: 16930–16935
  • Steensma D P, Dewald G W, Lasho T L, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 1207–1209
  • Jones A V, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168
  • Melzner I, Weniger M A, Menz C K, Moller P. Absence of the JAK2 V617F activating mutation in classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Leukemia 2006; 20: 157–158
  • Lee J W, Soung Y H, Kim S Y, et al. JAK2 V617F mutation is uncommon in non-Hodgkin lymphomas. Leuk Lymphoma 2006; 47: 313–314
  • Sulong S, Case M, Minto L, Wilkins B, Hall A, Irving J. The V617F mutation in Jak2 is not found in childhood acute lymphoblastic leukaemia. Br J Haematol 2005; 130: 964–965
  • Levine R L, Loriaux M, Huntly B J, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 2005; 106: 3377–3379
  • Lee J W, Soung Y H, Kim S Y, et al. Absence of JAK2 V617F mutation in gastric cancers. Acta Oncol 2006; 45: 222–223
  • Lee J W, Kim Y G, Soung Y H, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 2006; 25: 1434–1436
  • Scott L M, Campbell P J, Baxter E J, et al. The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 2005; 106: 2920–2921
  • Tefferi A, Sirhan S, Lasho T L, et al. Concomitant neutrophil JAK2 mutation screening and PRV-1 expression analysis in myeloproliferative disorders and secondary polycythaemia. Br J Haematol 2005; 131: 166–171
  • Kralovics R, Teo S S, Buser A S, et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005; 106: 3374–3376
  • Steensma D P, McClure R F, Karp J E, et al. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20: 971–978
  • Renneville A, Quesnel B, Charpentier A, et al. High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia 2006; 20: 2067–2070
  • Verstovsek S, Silver R T, Cross N C, Tefferi A. JAK2V617F mutational frequency in polycythemia vera: 100%, >90%, less?. Leukemia 2006; 20: 2067
  • Vizmanos J L, Ormazabal C, Larrayoz M J, Cross N C, Calasanz M J. JAK2 V617F mutation in classic chronic myeloproliferative diseases: a report on a series of 349 patients. Leukemia 2006; 20: 534–535
  • Wernig G, Mercher T, Okabe R, Levine R L, Lee B H, Gilliland D G. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281
  • Lacout C, Pisani D F, Tulliez M, Moreau Gachelin F, Vainchenker W, Villeval J L. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1650–1660
  • Tiedt R, Hao-Shen H, Sobas M A, et al. Ratio of mutant JAK2-V617F to wild type JAK2 determines the MPD phenotypes in transgenic mice. Blood 2007, First Edition Paper, prepublished online December 26, 2007; DOI 101182/blood-2007-08-107748
  • Shide K, Shimoda H K, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2008; 29: 87–95
  • Kittur J, Knudson R A, Lasho T L, et al. Clinical correlates of JAK2V617F allele burden in essential thrombocythemia. Cancer 2007; 109: 2279–2284
  • Tefferi A, Strand J J, Lasho T L, et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia 2007; 21: 2074–2075
  • Tefferi A, Lasho T L, Huang J, et al. Low JAK2V617F Allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, predicts inferior overall and leukemia-free survival. Blood (Suppl.) 2007; 110: 676
  • Vannucchi A M, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V > F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007; 110: 840–846
  • Dupont S, Masse A, James C, et al. The JAK2 617V > F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 2007; 110: 1013–1021
  • Kralovics R, Passamonti F, Buser A S, et al. A gain of function mutation in Jak2 is frequently found in patients with myeloproliferative disorders. New Engl J Med 2005; 352: 1779–1790
  • Lippert E, Boissinot M, Kralovics R, et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 2006; 108: 1865–1867
  • Scott L M, Scott M A, Campbell P J, Green A R. Progenitors homozygous for the V617F JAK2 mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435–2437
  • Jamieson C H, Gotlib J, Durocher J A, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 2006; 103: 6224–6229
  • Tefferi A, Lasho T L, Gilliland G. JAK2 mutations in myeloproliferative disorders. N Engl J Med 2005; 353: 1416–1417, author reply 1416 – 1417
  • Delhommeau F, Dupont S, Tonetti C, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007; 109: 71–77
  • Lasho T L, Mesa R, Gilliland D G, Tefferi A. Mutation studies in CD3+, CD19+ and CD34+ cell fractions in myeloproliferative disorders with homozygous JAK2(V617F) in granulocytes. Br J Haematol 2005; 130: 797–799
  • Bellanne-Chantelot C, Chaumarel I, Labopin M, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 2006; 108: 346–352
  • Ishii T, Bruno E, Hoffman R, Xu M. Involvement of various hematopoietic cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 2006; 108: 3128–3134
  • Pardanani A, Lasho T L, Finke C, et al. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes. Stem Cells 2007; 25: 2358–2362
  • Kralovics R, Teo S S, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377–1380
  • Nussenzveig R H, Swierczek S I, Jelinek J, et al. Polycythemia vera is not initiated by JAK2(V617F) mutation. Exp Hematol 2007; 35: 32–38
  • Theocharides A, Boissinot M, Girodon F, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379
  • Campbell P J, Baxter E J, Beer P A, et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108: 3548–3555
  • Pardanani A, Lasho T L, Finke C, Hanson C A, Tefferi A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007; 21: 1960–1963
  • Pardanani A, Fridley B L, Lasho T L, Gilliland D G, Tefferi A. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood, in press; DOI: 10.1182/blood-2007-06-095703
  • Pardanani A D, Levine R L, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476
  • Schnittger S, Bacher U, Kern W, Schroder M, Haferlach T, Schoch C. Report on two novel nucleotide exchanges in the JAK2 pseudokinase domain: D620E and E627E. Leukemia 2006; 20: 2195–2197
  • Grunebach F, Bross-Bach U, Kanz L, Brossart P. Detection of a new JAK2 D620E mutation in addition to V617F in a patient with polycythemia vera. Leukemia 2006; 20: 2210–2211
  • Malinge S, Ben-Abdelali R, Settegrana C, et al. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood 2007; 109: 2202–2204
  • Zhang S J, Li J Y, Li W D, Song J H, Xu W, Qiu H X. The investigation of JAK2 mutation in Chinese myeloproliferative diseases-identification of a novel C616Y point mutation in a PV patient. Int J Lab Hematol 2007; 29: 71–72
  • Wong C L, Ma E S, Wang C L, Lam H Y, Ma S Y. JAK2 V617F due to a novel TG → CT mutation at nucleotides 1848 – 1849: diagnostic implication. Leukemia 2007; 21: 1344–1346
  • Karow A, Waller C, Reimann C, Niemeyer C M, Kratz C P. JAK2 mutations other than V617F: a novel mutation and mini review. Leuk Res, in press; DOI: 10.1016/J.Leukres.2007.02-018
  • Kratz C P, Boll S, Kontny U, Schrappe M, Niemeyer C M, Stanulla M. Mutational screen reveals a novel JAK2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 2006; 20: 381–383
  • Mercher T, Wernig G, Moore S A, et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006; 108: 2770–2779
  • Scott L M, Tong W, Levine R, et al. Somatic mutations of JAK2 exon 12 in polycythemia vera and idiopathic erythrocytosis. NEJM 2007; 356: 459–468
  • Scott L M, Beer P A, Bench A J, Erber W N, Green A R. Prevalance of JAK2 V617F and exon 12 mutations in polycythaemia vera. Br J Haematol 2007; 139: 511–512
  • Butcher C M, Hahn U, To L B, et al. Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia 2007, advance online publication 4 October 2007; doi: 101038/sjleu2404971
  • Pietra D, Li S, Brisci A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2007, First Edition Paper, prepublished online November 6, 2007; DOI 101182/blood-2007-07-101576
  • Percy M J, Scott L M, Erber W N, et al. The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels. Haematologica 2007; 92: 1607–1614
  • Martinez-Aviles L, Besses C, Alvarez-Larran A, Cervantes F, Hernandez-Boluda J C, Bellosillo B. JAK2 exon 12 mutations in polycythemia vera or idiopathic erythrocytosis. Haematologica 2007; 92: 1717–1718
  • Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007; 110: 1092–1097
  • Li S, Kralovics R, De Libero G, Tichelli A, Skoda R C. Lineage distribution of JAK2 Exon12 mutations and JAK2-V617F in patients with polycythemia vera. Blood (Suppl.) 2007; 110: 1527
  • Duke V M, Gurunlian N, Yogashangari B, et al. Frequency of JAK2 Exon 12 mutations in JAK2 Exon 14 V617F-negative patients: high frequency in ET patients. Blood (Suppl.) 2007; 110: 2539
  • Colaizzo D, Amitrano L, Tiscia G L, Grandone E, Guardascione M A, Margaglione M. A new JAK2 gene mutation in patients with polycythemia vera and splanchnic vein thrombosis. Blood 2007; 110: 2768–2769
  • Lok S, Kaushansky K, Holly R D, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 1994; 369: 565–568
  • Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med 2006; 354: 2034–2045
  • Abkowitz J L, Chen J. Studies of c-Mpl function distinguish the replication of hematopoietic stem cells from the expansion of differentiating clones. Blood 2007; 109: 5186–5190
  • Le Coniat M, Souyri M, Vigon I, Wendling F, Tambourin P, Berger R. The human homology of the myeloproliferative virus maps to chromosome band 1p34. Hum Genet 1989; 83: 194–196
  • Ding J, Komatsu H, Wakita A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004; 103: 4198–4200
  • Ihara K, Ishii E, Eguchi M, et al. Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl Acad Sci USA 1999; 96: 3132–3136
  • Ballmaier M, Germeshausen M, Schulze H, et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001; 97: 139–146
  • Germeshausen M, Ballmaier M, Welte K. MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Hum Mutat 2006; 27: 296
  • Moliterno A R, Williams D M, Gutierrez-Alamillo L I, Salvatori R, Ingersoll R G, Spivak J L. Mpl Baltimore: a thrombopoietin receptor polymorphism associated with thrombocytosis. Proc Natl Acad Sci USA 2004; 101: 11444–11447
  • Moliterno A R, Hankins W D, Spivak J L. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med 1998; 338: 572–580
  • Horikawa Y, Matsumura I, Hashimoto K, et al. Markedly reduced expression of platelet C-Mpl receptor in essential thrombocythemia. Blood 1997; 90: 4031–4038
  • Tefferi A, Yoon S Y, Li C Y. Immunohistochemical staining for megakaryocyte c-mpl may complement morphologic distinction between polycythemia vera and secondary erythrocytosis. Blood 2000; 96: 771–772
  • Yoon S Y, Li C Y, Tefferi A. Megakaryocyte c-Mpl expression in chronic myeloproliferative disorders and the myelodysplastic syndrome: immunoperoxidase staining patterns and clinical correlates. Eur J Haematol 2000; 65: 170–174
  • Harrison C N, Gale R E, Wiestner A C, Skoda R C, Linch D C. The activating splice mutation in intron 3 of the thrombopoietin gene is not found in patients with non-familial essential thrombocythaemia. Br J Haematol 1998; 102: 1341–1343
  • Taksin A L, Couedic J P, Dusanter-Fourt I, et al. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L. Blood 1999; 93: 125–139
  • Kiladjian J J, Elkassar N, Hetet G, Briere J, Grandchamp B, Gardin C. Study of the thrombopoitin receptor in essential thrombocythemia. Leukemia 1997; 11: 1821–1826
  • Pardanani A, Levine R L, Lasho T L, et al. MPL515 mutations in Myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476
  • Schnittger S, Haferlach C, Beelen D W, et al. Detection of three different MPLW515 mutations in 10.1% of All JAK2 V617 unmutated ET and 9.3% of All JAK2 V617F unmutated OMF: a study of 387 patients. Blood (Suppl.) 2007; 110: 2546
  • Beer P, Campbell P, Erber W, et al. Clinical significance of MPL mutations in essential thrombocythemia: analysis of the PT-1 cohort. Blood (Suppl.) 2007; 110: 677
  • Vannucchi A M, Antonioli E, Pancrazzi A, et al. The clinical phenotype of patients with essential thrombocythemia harboring MPL 515W > L/K mutation. Blood (Suppl.) 2007; 110: 678
  • Guglielmelli P, Pancrazzi A, Bergamaschi G, et al. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation. Br J Haematol 2007; 137: 244–247
  • Pardanani A, Lasho T, Finke C M, et al. Extending JAK2V617F and MPL515 mutation analysis to single myeloid colonies and T and B lymphocytes. Stem Cells 2007; 25: 2358–2362
  • Chaligne R, James C, Tonetti C, et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 2007; 110: 3735–3743
  • Pardanani A, Lasho T L, Finke C, Markovic S N, Tefferi A. Demonstration of MPLW515K, but not JAK2V617F, in in vitro expanded CD4+ T lymphocytes. Leukemia 2007; 21: 2206–2207
  • Lasho T L, Pardanani A, McClure R F, et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br J Haematol 2006; 135: 683–687
  • Wolanskyj A P, Lasho T L, Schwager S M, et al. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol 2005; 131: 208–213
  • Patel R K, Lea N C, Heneghan M A, et al. Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. Gastroenterology 2006; 130: 2031–2038
  • Tefferi A, Pardanani A. Evaluation of “increased” hemoglobin in the JAK2 mutations era: a diagnostic algorithm based on genetic tests. Mayo Clin Proc 2007; 82: 599–604
  • Tefferi A, Pardanani A. Mutation screening for JAK2V617F: when to order the test and how to interpret the results. Leuk Res 2006; 30: 739–744
  • Antonioli E, Guglielmelli P, Pancrazzi A, et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19: 1847–1849
  • Campbell P J, Scott L M, Buck G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005; 366: 1945–1953
  • Tefferi A, Lasho T L, Schwager S M, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer 2006; 106: 631–635
  • Vannucchi A M, Antonioli E, Guglielmelli P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia 2007; 21: 1952–1959
  • Tefferi A, Lasho T L, Schwager S M, et al. The JAK2 tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br J Haematol 2005; 131: 320–328
  • Barosi G, Bergamaschi G, Marchetti M, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood 2007; 110: 4030–4036
  • Campbell P J, Griesshammer M, Dohner K, et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 2006; 107: 2098–2100
  • Pardanani A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 2008; 22: 23–30
  • Pardanani A, Hood J, Lasho T, et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 2007; 21: 1658–1668
  • Lasho T L, Finke C, Hood J D, et al. Primary cell experiments with TG101348, a JAK2-selective inhibitor, in the presence of myeloproliferative disorder-associated JAK2V617F, MPLW515L/K, and JAK2 Exon 12 mutations. Blood (Suppl.) 2007; 110: 3541
  • Wernig G, Kharas M G, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Blood (Suppl.) 2007; 110: 556
  • Geron I, Abrahamsson A, Barroga C, et al. Selective inhibition of JAK2 driven erythroid differentiation of polycythemia vera progenitors. Blood (Suppl.) 2007; 110: 1526
  • Zaleskas V M, Chan W W, Evangelista P, et al. A selective and potent oral inhibitor of the JAK2 tyrosine kinase reverses polycythemia and leukocytosis induced by JAK2 V617F in a mouse model. Blood (Suppl.) 2007; 110: 557
  • Guerini V, Barbui V, Spinelli O, et al. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia 2007, advance online publication 13 December 2007; doi: 101038/sjleu2405049
  • Verstovsek S, Kantarjian H, Pardanani A, et al. INCB018424, an oral, selective JAK2 inhibitor, shows significant clinical activity in a phase I/II study in patients with primary myelofibrosis (PMF) and post polycythemia vera/essential thrombocythemia myelofibrosis (Post-PV/ET MF). Blood (Suppl.) 2007; 110: 558
  • Verstovsek S, Pardanani A D, Shah N P, et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with primary myelofibrosis and post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood (Suppl.) 2007; 110: 553

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.