164
Views
42
CrossRef citations to date
0
Altmetric
Original Article: Research

Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma

, , , , &
Pages 1190-1201 | Received 04 Dec 2008, Accepted 18 Mar 2008, Published online: 01 Jul 2009

References

  • Willemze R, Jaffe E S, Burg G, Cerroni L, Berti E, Swerdlow S H, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768–3785
  • Vonderheid E C, Bernengo M G, Burg G, Duvic M, Heald P, Laroche L, et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. J Am Acad Dermatol 2002; 46: 95–106
  • Heald P W, Yan S L, Edelson R L, Tigelaar R, Picker L J. Skin-selective lymphocyte homing mechanisms in the pathogenesis of leukemic cutaneous T-cell lymphoma. J Invest Dermatol 1993; 101: 222–226
  • Kamarashev J, Burg G, Kempf W, Hess Schmid M, Dummer R. Comparative analysis of histological and immunohistological features in mycosis fungoides and Sézary syndrome. J Cutan Pathol 1998; 25: 407–412
  • Yamaguchi T, Ohshima K, Tsuchiya T, Suehuji H, Karube K, Nakayama J, et al. The comparison of expression of cutaneous lymphocyte-associated antigen (CLA), and Th1- and Th2-associated antigens in mycosis fungoides and cutaneous lesions of adult T-cell leukemia/lymphoma. Eur J Dermatol 2003; 13: 553–559
  • Sokolowska-Wojdylo M, Wenzel J, Gaffal E, Lenz J, Speuser P, Erdmann S, et al. Circulating clonal CLA(+) and CD4(+) T-cells in Sézary syndrome express the skin-homing chemokine receptors CCR4 and CCR10 as well as the lymph node-homing chemokine receptor CCR7. Br J Dermatol 2005; 152: 258–264
  • Notohamiprodjo M, Segerer S, Huss R, Hildebrandt B, Soler D, Djafarzadeh R, et al. CCR10 is expressed in cutaneous T-cell lymphoma. Int J Cancer 2005; 115: 641–647
  • Capriotti E, Vonderheid E C, Thoburn C J, Bright E C, Hess A D. Chemokine receptor expression by leukemic T-cells of cutaneous T-cell lymphoma: clinical and histopathological correlations. J Invest Dermatol 2007; 127: 2882–2892
  • Waldmann T A, Greene W C, Sarin P S, Saxinger C, Blayney D W, Blattner W A, et al. Functional and phenotypic comparison of human T-cell leukemia/lymphoma virus positive adult T-cell leukemia with human T-cell leukemia/lymphoma virus negative Sézary leukemia, and their distinction using anti-Tac. Monoclonal antibody identifying the human receptor for T-cell growth factor. J Clin Invest 1984; 73: 1711–1718
  • Nasu K, Said J, Vonderheid E, Olerud J, Sako D, Kadin M. Immunopathology of cutaneous T-cell lymphomas. Am J Pathol 1985; 119: 436–447
  • Harmon C B, Witzig T E, Katzmann J A, Pittelkow M R. Detection of circulating T-cells with CD4 + CD7- immunophenotype in patients with benign and malignant lymphoproliferative dermatoses. J Am Acad Dermatol 1996; 35(3 Part 1)404–410
  • Bernengo M G, Novelli M, Quaglino P, Lisa F, De Matteis A, Savoia P, et al. The relevance of the CD4+ CD26- subset in the identification of circulating Sézary cells. Br J Dermatol 2001; 144: 125–135
  • Talpur R, Jones D M, Alencar A J, Apisarnthanarax N, Herne K L, Yang Y, et al. CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 575–583
  • Broder S, Muul L, Marshall S, Waldmann T A. Neoplasms of immunoregulatory T-cells in clinical investigation. J Invest Dermatol 1980; 74: 267–271
  • Kim E J, Hess S, Richardson S K, Newton S, Showe L C, Benoit B M, et al. Immunopathogenesis and therapy of cutaneous T-cell lymphoma. J Clin Invest 2005; 115: 798–812
  • Berger C L, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640–1647
  • Wong H K, Wilson A J, Gibson H M, Hafner M S, Hedgcock C J, Berger C L, et al. Increased expression of CTLA-4 in malignant T-cells from patients with mycosis fungoides – cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 212–219
  • Heald P, Yan S L, Edelson R. Profound deficiency in normal circulating T-cells in erythrodermic cutaneous T-cell lymphoma. Arch Dermatol 1994; 130: 198–203
  • Fontenot J D, Gavin M A, Rudensky A Y. FoxP3 programs the development and function of CD4 + CD25+ regulatory T-cells. Nat Immunol 2003; 4: 330–336
  • Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, et al. Crucial role of FOXP3 in the development and function of human CD25 + CD4+ regulatory T-cells. Int Immunol 2004; 16: 1643–1656
  • Tran D Q, Ramsey H, Shevach E M. Induction of FOXP3 expression in naive human CD4 + FOXP3 T-cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007; 110: 2983–2990
  • Wang S, Chen L. T lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol 2004; 1: 37–42
  • Sansom D M, Walker L S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006; 212: 131–148
  • Nickoloff B J, Nestle F O, Zheng X G, Turka L A. T lymphocytes in skin lesions of psoriasis and mycosis fungoides express B7-1: a ligand for CD28. Blood 1994; 83: 2580–2586
  • McCusker M E, Garifallou M, Bogen S A. Sézary lineage cells can be induced to proliferate via CD28-mediated costimulation. J Immunol 1997; 158: 4984–4991
  • Tang Q, Henriksen K J, Boden E K, Tooley A J, Ye J, Subudhi S K, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25+ regulatory T-cells. J Immunol 2003; 171: 3348–3352
  • Laroche L, Kaiserlian D. Decreased natural-killer-cell activity in cutaneous T-cell lymphomas. N Engl J Med 1983; 308: 101–102
  • Neilan B A, Vonderheid E C, O'Neill K J. Natural cell-mediated cytotoxicity in cutaneous T-cell lymphomas. J Invest Dermatol 1983; 81: 176–178
  • Wood N L, Kitces E N, Blaylock W K. Depressed lymphokine activated killer cell activity in mycosis fungoides. A possible marker for aggressive disease. Arch Dermatol 1990; 126: 907–913
  • Wysocka M, Benoit B M, Newton S, Azzoni L, Montaner L J, Rook A H. Enhancement of the host immune responses in cutaneous T-cell lymphoma by CpG oligodeoxynucleotides and IL-15. Blood 2004; 104: 4142–4149
  • Bouaziz J D, Ortonne N, Giustiniani J, Schiavon V, Huet D, Bagot M, et al. Circulating natural killer lymphocytes are potential cytotoxic effectors against autologous malignanT-cells in Sézary syndrome patients. J Invest Dermatol 2005; 125: 1273–1278
  • Diefenbach A, Raulet D H. Innate immune recognition by stimulatory immunoreceptors. Curr Opin Immunol 2003; 15: 37–44
  • Raulet D H. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003; 3: 781–790
  • Stastny P. Introduction: MICA/MICB in innate immunity, adaptive immunity, autoimmunity, cancer, and in the immune response to transplants. Hum Immunol 2006; 67: 141–144
  • Vivier E, Tomasello E, Paul P. Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition. Curr Opin Immunol 2002; 14: 306–311
  • Su M W, Dorocicz I, Dragowska W H, Ho V, Li G, Voss N, et al. Aberrant expression of T-plastin in Sézary cells. Cancer Res 2003; 63: 7122–7127
  • Kari L, Loboda A, Nebozhyn M, Rook A H, Vonderheid E C, Nichols C, et al. Classification and prediction of survival in patients with the leukemic phase of cutaneous T-cell lymphoma. J Exp Med 2003; 197: 1477–1488
  • Tiemessen M M, Mitchell T J, Hendry L, Whittaker S J, Taams L S, John S. Lack of suppressive CD4 + CD25 + FOXP3+ T-cells in advanced stages of primary cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 2217–2223
  • Gibson H M, Wilson A J, Wong H K. Analysis of T-plastin gene regulation, a gene highly expressed in Sézary cells. J Invest Dermatol 2006; 126: 83
  • Booken N, Gratchev A, Utikal J, Weiß C, Yu X, Qadoumi M, et al. Sézary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3. Leukemia 2008; 22: 393–399
  • Miura Y, Thoburn C J, Bright E C, Chen W, Nakao S, Hess A D. Cytokine and chemokine profiles in autologous graft-versus-host disease (GVHD): interleukin-10 and interferon-gamma may be critical mediators in the development of autologous GVHD. Blood 2002; 100: 2650–2658
  • Miura Y, Thoburn C J, Bright E C, Hess A D. Cytolytic effector mechanisms and gene expression in autologous graft-versus-host disease: distinct roles of perforin and Fas ligand. Biol Blood Marrow Transplant 2004; 10: 156–170
  • Vonderheid E C, Bigler R D, Kotecha A, Boselli C M, Lessin S R, Bernengo M G, et al. Variable CD7 expression on T-cells in the leukemic phase of cutaneous T-cell lymphoma (Sézary syndrome). J Invest Dermatol 2001; 117: 654–662
  • Schwab C, Willers J, Niederer E, Ludwig E, Kundig T, Grob P, et al. The use of anti-T-cell receptor-Vbeta antibodies for the estimation of treatment success and phenotypic characterization of clonal T-cell populations in cutaneous T-cell lymphomas. Br J Haematol 2002; 118: 1019–1026
  • Lima M, Almeida J, dos Anjos Teixeira M, Queiros M L, Santos A H, Fonseca S, et al. Utility of flow cytometry immunophenotyping and DNA ploidy studies for diagnosis and characterization of blood involvement in CD4+ Sézary's syndrome. Haematologica 2003; 88: 874–887
  • Scarisbrick J J, Whittaker S, Evans A V, Fraser-Andrews E A, Child F J, Dean A, et al. Prognostic significance of tumor burden in the blood of patients with erythrodermic primary cutaneous T-cell lymphoma. Blood 2001; 97: 624–630
  • Vonderheid E C, Pena J, Nowell P. Sézary cell counts in erythrodermic cutaneous T-cell lymphoma: implications for prognosis and staging. Leuk Lymphoma 2006; 47: 1841–1856
  • Sokolowska-Wojdylo M, Wenzel J, Gaffal E, Lenz J, Speuser P, Erdmann S, et al. Circulating clonal CLA(+) and CD4(+) T-cells in Sézary syndrome express the skin-homing chemokine receptors CCR4 and CCR10 as well as the lymph node-homing chemokine receptor CCR7. Br J Dermatol 2005; 152: 258–264
  • Notohamiprodjo M, Segerer S, Huss R, Hildebrandt B, Soler D, Djafarzadeh R, et al. CCR10 is expressed in cutaneous T-cell lymphoma. Int J Cancer 2005; 115: 641–647
  • Delanote V, Vandekerckhove J, Gettemans J. Plastins: versatile modulators of actin organization in (patho)physiological cellular processes. Acta Pharmacol Sin 2005; 26: 769–779
  • Juliano R L. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 2002; 42: 283–323
  • Galiegue-Zouitina S, Quief S, Hildebrand M P, Denis C, Detourmignies L, Lai J L, et al. Nonrandom fusion of L-plastin(LCP1) and LAZ3(BCL6) genes by t(3;13)(q27;q14) chromosome translocation in two cases of B-cell non-Hodgkin lymphoma. Genes Chromosomes Cancer 1999; 26: 97–105
  • Mitelman Database of Chromosome Aberrations in Cancer (2006). Mitelman F, Johansson B and Mertens F (Eds.), http://cgap.nci.nih.gov/Chromosomes/Mitelman)
  • Bour-Jordan H, Blueston J A. CD28 function: a balance of costimulatory and regulatory signals. J Clin Immunol 2002; 22: 1–7
  • van Doorn R, Dijkman R, Vermeer M H, Out-Luiting J J, van der Raaij-Helmer E M, et al. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis. Cancer Res 2004; 64: 5578–5586
  • Salih H R, Antropius H, Gieseke F, Lutz S Z, Kanz L, Rammensee H G, et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003; 102: 1389–1396
  • Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C, et al. MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells costimulates pamidronate-activated γδ lymphocytes. Cancer Res 2005; 65: 7502–7508
  • Carbone E, Neri P, Mesuraca M, Fulciniti M T, Otsuki T, Pende D, et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 2005; 105: 251–258
  • Coudert J D, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E, et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 2005; 106: 1711–1717
  • Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738
  • Salih H R, Goehlsdorf D, Steinle A. Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum Immunol 2006; 67: 188–195
  • Roncador G, Garcia J F, Garcia J F, Maestre L, Lucas E, Menarguez J, et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 2005; 19: 2247–2253
  • Klemke C D, Fritzsching B, Franz B, Kleinmann E V, Oberle N, Poenitz N, et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sézary syndrome from other cutaneous T-cell lymphomas. Leukemia 2006; 20: 1123–1129
  • Hallermann C, Niermann C, Schulze H J. Regulatory T-cell phenotype in association with large cell transformation of mycosis fungoides. Eur J Haematol 2007; 78: 260–263
  • Gjerdrum L M, Woetmann A, Odum N, Burton C M, Rossen K, Skovgaard G L, et al. FOXP3+ regulatory T-cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 2007; 21: 2512–2518
  • Banham A H, Brown P J, Lyne L, Schulze H-J, Hallerman C. Is FOXP3 expressed in cutaneous T-cell lymphomas. Eur J Haematol 2008; 80: 90–91
  • Kwon S, Geskin L, McCann S, Paley K, Falo L D, Jr. CTCL patients exhibit elevated levels of regulatory T-cell that correspond with disease severity and response to therapy. J Invest Dermatol 2006; 126: 110
  • Yamamoto M, Tsuji-Takayama K, Suzuki M, Harashima A, Sugimoto A, Motoda R, et al. Comprehensive analysis of FOXP3 mRNA expression in leukemia and transformed cell lines. Leuk Res 2008; 32: 651–658
  • Walker M R, Kasprowicz D J, Gersuk V H, Benard A, Van Landeghen M, Buckner J H, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4 + CD25- T-cells. J Clin Invest 2003; 112: 1437–1443
  • Morgan M E, van Bilsen J H, Bakker A M, Heemskerk B, Schilham M W, Hartgers F C, et al. Expression of FOXP3 mRNA is not confined to CD4 + CD25+ T regulatory cells in humans. Hum Immunol 2005; 66: 13–20
  • Zou W. Regulatory T-cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307
  • Yu P, Fu Y X. Tumor-infiltrating T lymphocytes: friends or foes. Lab Invest 2006; 86: 231–245
  • Piccirillo C A, Shevach E M. Naturally-occurring CD4 + CD25+ immunoregulatory T-cells: central players in the arena of peripheral tolerance. Semin Immunol 2004; 16: 81–88
  • Sakaguchi S, Setoguchi R, Yagi H, Nomura T. Naturally arising Foxp3-expressing CD25 + CD4+ regulatory T-cells in self-tolerance and autoimmune disease. Curr Top Microbiol Immunol 2006; 305: 51–66
  • Read S, Greenwald R, Izcue A, Robinson N, Mandelbrot D, Francisco L, et al. Blockade of CTLA-4 on CD4 + CD25+ regulatory T-cells abrogates their function in vivo. J Immunol 2006; 177: 4376–4383
  • Maeda A, Schwarz A, Kernebeck K, Gross N, Aragane Y, Peritt D, et al. Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T-cells. J Immunol 2005; 174: 5968–5976
  • Biagi E, Di Biaso I, Leoni V, Gaipa G, Rossi V, Bugarin C, et al. Extracorporeal photochemotherapy is accompanied by increasing levels of circulating CD4 + CD25 + GITR + Foxp3 + CD62L+ functional regulatory T-cells in patients with graft-versus-host disease. Transplantation 2007; 84: 31–39
  • Maier T, Tun-Kyi A, Tassis A, Jungius K P, Burg G, Dummer R, et al. Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 2003; 102: 2338–2344
  • Salskov-Iversen M, Berger C L, Edelson R L. Rapid construction of a dendritic cell vaccine through physical perturbation and apoptotic malignant T-cell loading. J Immune Based Ther Vaccines 2005; 3: 4–19
  • Bass K K, Mastrangelo M J. Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol Immunother 1998; 47: 1–12
  • Quaglino P, Fierro M T, Rossotto G L, Savoia P, Bernengo M G. Treatment of advanced mycosis fungoides/Sézary syndrome with fludarabine and potential adjunctive benefit to subsequent extracorporeal photochemotherapy. Br J Dermatol 2004; 150: 327–336
  • Beyer M, Schultze J L. Regulatory T-cells in cancer. Blood 2006; 108: 804–811
  • Guitart J, Wickless S C, Oyama Y, Kuzel T M, Rosen S T, Traynor A, et al. Long-term remission after allogeneic hematopoietic stem cell transplantation for refractory cutaneous T-cell lymphoma. Arch Dermatol 2002; 138: 1359–1365
  • Soligo D, Ibatici A, Berti E, Morandi P, Longhi E, Venegoni L, et al. Treatment of advanced mycosis fungoides by allogeneic stem-cell transplantation with a nonmyeloablative regimen. Bone Marrow Transplant 2003; 31: 663–666
  • Herbert K E, Spencer A, Grigg A, Ryan G, McCormack C, Prince H M. Graft-versus-lymphoma effect in refractory cutaneous T-cell lymphoma after reduced-intensity HLA-matched sibling allogeneic stem cell transplantation. Bone Marrow Transplant 2004; 34: 521–525
  • Molina A, Zain J, Arber D A, Angelopolou M, O'Donnell M, Murata-Collins J, et al. Durable clinical, cytogenetic, and molecular remissions after allogeneic hematopoietic cell transplantation for refractory Sézary syndrome and mycosis fungoides. J Clin Oncol 2005; 23: 6163–6171
  • Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J, et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T-cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol 2004; 126: 81–84
  • Kohno T, Yamada Y, Akamatsu N, Kamihira S, Imaizumi Y, Tomonaga M, et al. Possible origin of adult T-cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T-cells. Cancer Sci 2005; 96: 527–533
  • Matsubara Y, Hori T, Morita R, Sakaguchi S, Uchiyama T. Phenotypic and functional relationship between adult T-cell leukemia cells and regulatory T-cells. Leukemia 2005; 19: 482–483
  • Yamaguchi T, Ohshima K, Karube K, Tutiya T, Kawano R, Suefuji H, et al. Clinicopathological features of cutaneous lesions of adult T-cell leukaemia/ lymphoma. Br J Dermatol 2005; 152: 76–81
  • Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu, et al. Regulatory T-cell-like activity of FoxP3+ adult T-cell leukemia cells. Int Immunol 2006; 18: 269–277
  • Jones D, Ibrahim S, Patel K, Luthra R, Duvic M, Medeiros L J. Degree of CD25 expression in T-cell lymphoma is dependent on tissue site: implications for targeted therapy. Clin Cancer Res 2004; 10: 5587–5594
  • Stefanato C M, Tallini G, Crotty P L. Histologic and immunophenotypic features prior to transformation in patients with transformed cutaneous T-cell lymphoma: is CD25 expression in skin biopsy samples predictive of large cell transformation in cutaneous T-cell lymphoma. Am J Dermatopathol 1998; 20: 1–6
  • Foulc P, N'Guyen J M, Dreno B. Prognostic factors in Sézary syndrome: a study of 28 patients. Br J Dermatol 2003; 149: 1152–1158
  • Marti R M, Pujol R M, Servitje O, Palou J, Romagosa V, Bordes R, et al. Sézary syndrome and related variants of classic cutaneous T-cell lymphoma. A descriptive and prognostic clinicopathologic study of 29 cases. Leuk Lymphoma 2003; 44: 59–69
  • Wasik M A, Vonderheid E C, Bigler R D, Marti R, Lessin S R, Polansky M, et al. Increased serum concentration of the soluble interleukin-2 receptor in cutaneous T-cell lymphoma. Clinical and prognostic implications. Arch Dermatol 1996; 132: 42–47
  • Bernengo M G, Quaglino P, Novelli M, Cappello N, Doveil G C, Lisa F, et al. Prognostic factors in Sézary syndrome: a multivariate analysis of clinical, haematological and immunological features. Ann Oncol 1998; 9: 857–863

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.