179
Views
9
CrossRef citations to date
0
Altmetric
Reviews

The role of aberrant transcription factor in the progression of chronic myeloid leukemia

Pages 1463-1469 | Received 13 Apr 2008, Accepted 25 Apr 2008, Published online: 01 Jul 2009

References

  • Daley G Q, Van Etten R A, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830
  • Melo J V, Barnes D J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007; 7: 441–453
  • Calabretta B, Perrotti D. The biology of CML blast crisis. Blood 2004; 103: 4010–4022
  • Cuenco G M, Ren R. Cooperation of BCR/ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene 2001; 20: 8236–8248
  • Dash A B, Williams I R, Kutok J L, Tomasson M H, Anastasiadou E, Lindahl K, et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 2002; 99: 7622–7627
  • Mayotte N, Roy D C, Yao J, Kroon E, Sauvageau G. Oncogenic interaction between BCR/ABL and NUP98/HOXA9 demonstrated by the use of an in vitro purging culture system. Blood 2002; 100: 4177–4184
  • Pina C, Enver T. Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators. Oncogene 2007; 26: 6750–6765
  • Kelly L M, Gilliland D G. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198
  • Gilliland D G, Tallman M S. Focus on acute leukemias. Cancer Cell 2002; 1: 417–420
  • Jamieson C H, Ailles L E, Dylla S J, Muijtjens M, Jones C, Zehnder J L, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667
  • Shimizu R, Yamamoto M. Gene expression regulation and domain function of hematopoietic GATA factors. Semin Cell Dev Biol 2005; 16: 129–136
  • Ting C N, Olson M C, Barton K P, Leiden J M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996; 384: 474–478
  • Grass J A, Boyer M E, Pal S, Wu J, Weiss M J, Bresnick E H. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci U S A 2003; 100: 8811–8816
  • Tsai F Y, Orkin S H. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 1997; 89: 3636–3643
  • Tsai F Y, Keller G, Kuo F C, Weiss M, Chen J, Rosenblatt M, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371: 221–226
  • Minegishi N, Suzuki N, Yokomizo T, Pan X, Fujimoto T, Takahashi S, et al. Expression and domain-specific function of GATA-2 during differentiation of the hematopoietic precursor cells in midgestation mouse embryos. Blood 2003; 102: 896–905
  • Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 2005; 24: 1976–1987
  • Wieser R, Volz A, Vinatzer U, Gardiner K, Jäger U, Mitterbauer M, et al. Transcription factor GATA-2 gene is located near 3q21 breakpoints in myeloid leukemia. Biochem Biophys Res Commun 2000; 273: 239–245
  • Zhang S J, Ma L Y, Huang Q H, Li G, Gu B W, Gao X D, et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci USA 2008; 105: 2076–2081
  • Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska H S, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 1999; 96: 8705–8710
  • Walsh J C, DeKoter R P, Lee H J, Smith E D, Lancki D W, Gurish M F, et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002; 17: 665–676
  • Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S. Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 1486–1491
  • Mueller B U, Pabst T, Osato M, Asou N, Johansen L M, Minden M D, et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007
  • Kronenwett R, Butterweck U, Steidl U, Kliszewski S, Neumann F, Bork S, et al. Distinct molecular phenotype of malignant CD34(+) hematopoietic stem and progenitor cells in chronic myelogenous leukemia. Oncogene 2005; 24: 5313–5324
  • de Bruijn M F, Speck N A. Core-binding factors in hematopoiesis and immune function. Oncogene 2004; 23: 4238–4248
  • Pabst T, Mueller B U. Transcriptional dysregulation during myeloid transformation in AML. Oncogene 2007; 26: 6829–6837
  • Harada H, Harada Y, Tanaka H, Kimura A, Inaba T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101: 673–680
  • Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai J L, et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 2000; 96: 2862–2869
  • Song W J, Sullivan M G, Legare R D, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175
  • Roche-Lestienne C, Deluche L, Corm S, Tigaud I, Joha S, Philippe N, et al. RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR/ABL+ leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood 2008; 111: 3735–3741
  • Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 1994; 13: 504–510
  • Mitani K. Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 2004; 23: 4263–4269
  • Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia 1997; 11: 2022–2031
  • Izutsu K, Kurokawa M, Imai Y, Ichikawa M, Asai T, Maki K, et al. The t(3;21) fusion product, AML1/Evi-1 blocks AML1-induced transactivation by recruiting CtBP. Oncogene 2002; 21: 2695–2703
  • Cuenco G M, Nucifora G, Ren R. Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML. Proc Natl Acad Sci USA 2000; 97: 1760–1765
  • Helbling D, Mueller B U, Timchenko N A, Hagemeijer A, Jotterand M, Meyer-Monard S, et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses C/EBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA 2004; 101: 13312–13317
  • Peterson L F, Boyapati A, Ahn E Y, Biggs J R, Okumura A J, Lo M C, et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 2007; 110: 799–805
  • Yin C C, Medeiros L J, Glassman A B, Lin P. t(8;21)(q22;q22) in blast phase of chronic myelogenous leukemia. Am J Clin Pathol 2004; 121: 836–842
  • Kojima K, Yasukawa M, Ishimaru F, Dansako H, Matsuo Y, Kimura Y, et al. Additional translocation (8;21)(q22;q22) in a patient with Philadelphia-positive chronic myelogenous leukaemia in the blastic phase. Br J Haematol 1999; 106: 720–722
  • Wang Y Y, Zhou G B, Yin T, Chen B, Shi J Y, Liang W X, et al. AML1/ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 2005; 102: 1104–1109
  • Argiropoulos B, Humphries R K. Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007; 26: 6766–6776
  • Nakamura T, Largaespada D A, Lee M P, Johnson L A, Ohyashiki K, Toyama K, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12: 154–158
  • Borrow J, Shearman A M, Stanton V P, Jr, Becher R, Collins T, Williams A J, et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996; 12: 159–167
  • Yamamoto K, Nakamura Y, Saito K, Furusawa S. Expression of the NUP98/HOXA9 fusion transcript in the blast crisis of Philadelphia chromosome-positive chronic myelogenous leukaemia with t(7;11)(p15;p15). Br J Haematol 2000; 109: 423–426
  • Ahuja H G, Popplewell L, Tcheurekdjian L, Slovak M L. NUP98 gene rearrangements and the clonal evolution of chronic myelogenous leukemia. Genes Chromosomes Cancer 2001; 30: 410–415
  • Kasper L H, Brindle P K, Schnabel C A, Pritchard C E, Cleary M L, van Deursen J M. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98/HOXA9 oncogenicity. Mol Cell Biol 1999; 19: 764–776
  • Takeda A, Goolsby C, Yaseen N R. NUP98/HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 2006; 66: 6628–6637
  • Chung K Y, Morrone G, Schuringa J J, Plasilova M, Shieh J H, Zhang Y, et al. Enforced expression of NUP98/HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res 2006; 66: 11781–11791
  • Calvo K R, Sykes D B, Pasillas M P, Kamps M P. NUP98/HOXA9 immortalizes myeloid progenitors, enforces expression of HOXa9, HOXa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of HOXa9 and Meis1. Oncogene 2002; 21: 4247–4256
  • Lawrence H J, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Kömüves L, et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999; 13: 1993–1999
  • Kawagoe H, Humphries R K, Blair A, Sutherland H J, Hogge D E. Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13: 687–698
  • Lawrence H J, Helgason C D, Sauvageau G, Fong S, Izon D J, Humphries R K, et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89: 1922–1930
  • Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G. NUP98/HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 2001; 20: 350–361
  • Bai X T, Gu B W, Yin T, Niu C, Xi X D, Zhang J, et al. Trans-repressive effect of NUP98-PMX1 on PMX1-regulated c-FOS gene through recruitment of histone deacetylase 1 by FG repeats. Cancer Res 2006; 66: 4584–4590
  • Nishii K, Usui E, Sakakura M, Miyata E, Ridge S A, Ford A M, et al. Additional t(11;17)(q23;q21) in a patient with Philadelphia-positive mixed lineage antigen-expressing leukemia. Cancer Genet Cytogenet 2001; 126: 8–12
  • Zhang D E, Zhang P, Wang N D, Hetherington C J, Darlington G J, Tenen D G. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci U S A 1997; 94: 569–574
  • Scott L M, Civin C I, Rorth P, Friedman A D. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 1992; 80: 1725–1735
  • Cheng T, Shen H, Giokas D, Gere J, Tenen D G, Scadden D T. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc Natl Acad Sci USA 1996; 93: 13158–13163
  • Pabst T, Mueller B U, Zhang P, Radomska H S, Narravula S, Schnittger S, et al. Dominant-negative mutations of C/EBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBP alpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270
  • Preudhomme C, Sagot C, Boissel N, Cayuela J M, Tigaud I, de Botton S, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723
  • Fröhling S, Schlenk R F, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22: 624–633
  • Pabst T, Stillner E, Neuberg D, Nimer S, Willman C L, List A F, et al. Mutations of the myeloid transcription factor C/EBPA are not associated with the blast crisis of chronic myeloid leukaemia. Br J Haematol 2006; 133: 400–402
  • Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, et al. BCR/ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 2002; 30: 48–58
  • Chang J S, Santhanam R, Trotta R, Neviani P, Eiring A M, Briercheck E, et al. High levels of the BCR/ABL oncoprotein are required for the MAPK-hnRNP-E2 dependent suppression of C/EBPalpha-driven myeloid differentiation. Blood 2007; 110: 994–1003
  • Tavor S, Park D J, Gery S, Vuong P T, Gombart A F, Koeffler H P. Restoration of C/EBPalpha expression in a BCR/ABL+ cell line induces terminal granulocytic differentiation. J Biol Chem 2003; 278: 52651–52659
  • Radich J P, Dai H, Mao M, Oehler V, Schelter J, Druker B, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799
  • Skorski T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 2002; 21: 8591–8594
  • Sattler M, Verma S, Shrikhande G, Byrne C H, Pride Y B, Winkler T, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 2000; 275: 24273–24278
  • Weisberg E, Manley P W, Cowan-Jacob S W, Hochhaus A, Griffin J D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007; 7: 345–356
  • Quintás-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new wave of BCR-ABL inhibitors. Nat Rev Drug Discov 2007; 6: 834–848
  • Shen Z X, Shi Z Z, Fang J, Gu B W, Li J M, Zhu Y M, et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 5328–5335
  • Yin T, Wu Y L, Sun H P, Sun G L, Du Y Z, Wang K K, et al. Combined effects of As4S4 and imatinib on chronic myeloid leukemia cells and BCR/ABL oncoprotein. Blood 2004; 104: 4219–4225

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.