156
Views
18
CrossRef citations to date
0
Altmetric
Reviews

The biology and therapeutic potential of natural regulatory T-cells in the bone marrow transplant setting

, , &
Pages 1860-1869 | Received 30 May 2008, Accepted 13 Jun 2008, Published online: 01 Jul 2009

References

  • Horowitz M. Uses and growth of hematopoietic cell transplantation. Hematopoietic Cell Transplantation, K G Blumex, S J Forman, F R Applebaum. Wiley Blackwell Publishing, Hoboken, NJ 2004
  • Cassileth P A, Harrington D P, Appelbaum F R, Lazarus H M, Rowe J M, Paietta E, et al. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med 1998; 339: 1649–1656
  • Levine J E, Harris R E, Loberiza F R, Jr, Armitage J O, Vose J M, Van Besien K, et al. A comparison of allogeneic and autologous bone marrow transplantation for lymphoblastic lymphoma. Blood 2003; 101: 2476–2482
  • Zhang M J, Hoelzer D, Horowitz M M, Gale R P, Messerer D, Klein J P, et al. Long-term follow-up of adults with acute lymphoblastic leukemia in first remission treated with chemotherapy or bone marrow transplantation. The acute lymphoblastic leukemia working committee. Ann Intern Med 1995; 123: 428–431
  • Zittoun R A, Mandelli F, Willemze R, de Witte T, Labar B, Resegotti L, et al. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European organization for research and treatment of cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) leukemia cooperative groups. N Engl J Med 1995; 332: 217–223
  • Wysocki C A, Panoskaltsis-Mortari A, Blazar B R, Serody J S. Leukocyte migration and graft-versus-host disease. Blood 2005; 105: 4191–4199
  • Goker H, Haznedaroglu I C, Chao N J. Acute graft-vs.-host disease: pathobiology and management. Exp Hematol 2001; 29: 259–277
  • Higman M A, Vogelsang G B. Chronic graft versus host disease. Br J Haematol 2004; 125: 435–454
  • Chen W, Jin W, Hardegen N, Lei K J, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198: 1875–1886
  • Fantini M C, Becker C, Monteleone G, Pallone F, Galle P R, Neurath M F. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172: 5149–5153
  • Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, et al. CD8+ CD28− T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol 2007; 179: 4323–4334
  • Najafian N, Chitnis T, Salama A D, Zhu B, Benou C, Yuan X, et al. Regulatory functions of CD8+CD28-T cells in an autoimmune disease model. J Clin Invest 2003; 112: 1037–1048
  • Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16: 53–65
  • Gershon R K, Kondo K. Infectious immunological tolerance. Immunology 1971; 21: 903–914
  • Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969; 166: 753–755
  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985; 161: 72–87
  • Smith H, Sakamoto Y, Kasai K, Tung K S. Effector and regulatory cells in autoimmune oophoritis elicited by neonatal thymectomy. J Immunol 1991; 147: 2928–2933
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164
  • Herbelin A, Gombert J M, Lepault F, Bach J F, Chatenoud L. Mature mainstream TCR alpha beta+CD4+ thymocytes expressing l-selectin mediate “active tolerance” in the nonobese diabetic mouse. J Immunol 1998; 161: 2620–2628
  • McHugh R S, Whitters M J, Piccirillo C A, Young D A, Shevach E M, Collins M, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002; 16: 311–323
  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–142
  • Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310
  • Tang Q, Henriksen K J, Boden E K, Tooley A J, Ye J, Subudhi S K, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 2003; 171: 3348–3352
  • Godfrey V L, Wilkinson J E, Russell L B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991; 138: 1379–1387
  • Wildin R S, Smyk-Pearson S, Filipovich A H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2002; 39: 537–545
  • Bennett C L, Christie J, Ramsdell F, Brunkow M E, Ferguson P J, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21
  • Brunkow M E, Jeffery E W, Hjerrild K A, Paeper B, Clark L B, Yasayko S A, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73
  • Chatila T A, Blaeser F, Ho N, Lederman H M, Voulgaropoulos C, Helms C, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic dysregulation syndrome. J Clin Invest 2000; 106: R75–R81
  • Fontenot J D, Gavin M A, Rudensky A Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061
  • Khattri R, Cox T, Yasayko S A, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 337–342
  • Tang Q, Henriksen K J, Bi M, Finger E B, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004; 199: 1455–1465
  • Liu W, Putnam A L, Xu-Yu Z, Szot G L, Lee M R, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203: 1701–1711
  • Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al. Expression of interleukin (IL)- 2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006; 203: 1693–1700
  • Thornton A M, Shevach E M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188: 287–296
  • Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000; 30: 1538–1543
  • Piccirillo C A, Shevach E M. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001; 167: 1137–1140
  • Hoffmann P, Ermann J, Edinger M, Fathman C G, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399
  • Asseman C, Mauze S, Leach M W, Coffman R L, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190: 995–1004
  • Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005; 202: 1075–1085
  • Grossman W J, Verbsky J W, Barchet W, Colonna M, Atkinson J P, Ley T J. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004; 21: 589–601
  • Taylor P A, Lees C J, Blazar B R. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002; 99: 3493–3499
  • Edinger M, Hoffmann P, Ermann J, Drago K, Fathman C G, Strober S, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150
  • Johnson B D, Konkol M C, Truitt R L. CD25+ immunoregulatory T-cells of donor origin suppress alloreactivity after BMT. Biol Blood Marrow Transplant 2002; 8: 525–535
  • Jones S C, Murphy G F, Korngold R. Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Biol Blood Marrow Transplant 2003; 9: 243–256
  • Taylor P A, Panoskaltsis-Mortari A, Swedin J M, Lucas P J, Gress R E, Levine B L, et al. l-selectin(hi) but not the l-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 2004; 104: 3804–3812
  • Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon B L, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 2003; 112: 1688–1696
  • Chai J G, Coe D, Chen D, Simpson E, Dyson J, Scott D. In vitro expansion improves in vivo regulation by CD4+ CD25+ regulatory T cells. J Immunol 2008; 180: 858–869
  • Hoffmann P, Eder R, Kunz-Schughart L A, Andreesen R, Edinger M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 2004; 104: 895–903
  • Nguyen V H, Zeiser R, Dasilva D L, Chang D S, Beilnack A, Contag C H, Negrin R S. In vivo dynamics of regulatory T cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood 2007; 109: 2649–2656
  • Zhao D, Zhao Z C, Yi T, Lin C, Todorov I, Kandeel F, et al. In vivo activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic GVHD. Blood 2007; 110: 110a
  • Jacobsohn D A, Vogelsang G B. Acute graft versus host disease. Orphanet J Rare Dis 2007; 2: 35
  • Shlomchik W D. Graft-versus-host disease. Nat Rev Immunol 2007; 7: 340–352
  • Hanash A M, Levy R B. Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 2005; 105: 1828–1836
  • Barao I, Hanash A M, Hallett W, Welniak L A, Sun K, Redelman D, et al. Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc Natl Acad Sci USA 2006; 103: 5460–5465
  • Szanya V, Ermann J, Taylor C, Holness C, Fathman C G. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses l-selectin and high levels of CCR7. J Immunol 2002; 169: 2461–2465
  • Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg F G, Higgins J P, et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 2005; 105: 2220–2226
  • Carlson M J, Seidel H E, Serody J S. CD62L is not critical for T-Regulatory cell-mediated protection from lethal acute GVHD. American Society of Hematology, Atlanta, GA 2007, Poster board #368-II
  • Wysocki C A, Jiang Q, Panoskaltsis-Mortari A, Taylor P A, McKinnon K P, Su L, et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood 2005; 106: 3300–3307
  • Varona R, Cadenas V, Lozano M, Moreno-Ortiz M C, Kremer L, Martinez A C, et al. CCR6 regulates the function of alloreactive and regulatory CD4+ T cells during acute graft-versus-host disease. Leuk Lymphoma 2006; 47: 1469–1476
  • Mielke S, Rezvani K, Savani B N, Nunes R, Yong A S, Schindler J, et al. Reconstitution of FOXP3+ regulatory T cells (Tregs) after CD25-depleted allotransplantation in elderly patients and association with acute graft-versus-host disease. Blood 2007; 110: 1689–1697
  • Nadal E, Garin M, Kaeda J, Apperley J, Lechler R, Dazzi F. Increased frequencies of CD4(+)CD25(high) T(regs) correlate with disease relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Leukemia 2007; 21: 472–479
  • Davison G M, Novitzky N, Kline A, Thomas V, Abrahams L, Hale G, et al. Immune reconstitution after allogeneic bone marrow transplantation depleted of T cells. Transplantation 2000; 69: 1341–1347
  • Clark F J, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M, et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood 2004; 103: 2410–2416
  • Miura Y, Thoburn C J, Bright E C, Phelps M L, Shin T, Matsui E C, et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 2004; 104: 2187–2193
  • Zorn E, Kim H T, Lee S J, Floyd B H, Litsa D, Arumugarajah S, et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 2005; 106: 2903–2911
  • Sanchez J, Casano J, Alvarez M A, Roman-Gomez J, Martin C, Martinez F, et al. Kinetic of regulatory CD25high and activated CD134+ (OX40) T lymphocytes during acute and chronic graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 2004; 126: 697–703
  • Schneider M, Munder M, Karakhanova S, Ho A D, Goerner M. The initial phase of graft-versus-host disease is associated with a decrease of CD4+CD25+ regulatory T cells in the peripheral blood of patients after allogeneic stem cell transplantation. Clin Lab Haematol 2006; 28: 382–390
  • Wolf D, Wolf A M, Fong D, Rumpold H, Strasak A, Clausen J, et al. Regulatory T-cells in the graft and the risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation 2007; 83: 1107–1113
  • Beyer M, Kochanek M, Giese T, Endl E, Weihrauch M R, Knolle P A, et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 2006; 107: 3940–3949
  • Curiel T J, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949
  • Liyanage U K, Moore T T, Joo H G, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761
  • Marshall N A, Christie L E, Munro L R, Culligan D J, Johnston P W, Barker R N, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004; 103: 1755–1762
  • Wolf A M, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9: 606–612
  • Wolf D, Wolf A M, Rumpold H, Fiegl H, Zeimet A G, Muller-Holzner E, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 2005; 11: 8326–8331
  • Woo E Y, Chu C S, Goletz T J, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61: 4766–4772

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.