489
Views
75
CrossRef citations to date
0
Altmetric
Original Article

Current understanding of the role of Epstein–Barr virus in lymphomagenesis and therapeutic approaches to EBV-associated lymphomas

, , &
Pages 27-34 | Received 16 Jun 2008, Accepted 29 Jun 2008, Published online: 01 Jul 2009

References

  • Hislop A D, Taylor G S, Sauce D, Rickinson A B. Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol 2007; 25: 587–617
  • Rickinson A B, Kieff E. Epstein–Barr virus. Fields Virology, 5th edn, D M Knipe, P M Howley. Williams and Wilkins, Philadelphia: Lippincott 2007; 2655–2700
  • Cohen J I. Epstein–Barr virus infection. N Engl J Med 2000; 343: 481–492
  • Lim W H, Russ G R, Coates P T. Review of Epstein–Barr virus and post-transplant lymphoproliferative disorder post-solid organ transplantation. Nephrology (Carlton) 2006; 11: 355–366
  • Gottschalk S, Rooney C M, Heslop H E. Post-transplant lymphoproliferative disorders. Annu Rev Med 2005; 56: 29–44
  • Penn I. The problem of cancer in organ transplant recipients: an overview. Transplant Sci 1994; 4: 23–32
  • Khanna R, Moss D, Gandhi M. Technology insight: applications of emerging immunotherapeutic strategies for Epstein–Barr virus-associated malignancies. Nat Clin Pract Oncol 2005; 2: 138–149
  • Kieff E, Rickinson A B. Epstein–Barr virus and its replication. Fields Virology, 5th edn, D M Knipe, P M Howley. Williams and Wilkins, Philadelphia: Lippincott 2007; 2603–2654
  • Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985; 43: 831–840
  • Kaye K M, Izumi K M, Kieff E. Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 1993; 90: 9150–9154
  • Kulwichit W, Edwards R H, Davenport E M, Baskar J F, Godfrey V, Raab-Traub N. Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A 1998; 95: 11963–11968
  • Eliopoulos E G, Gallagher N J, Blake S M, Dawson C W, Young L S. Activation of the p38 mitogen-activated protein kinase pathway by Epstein–Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 1999; 274: 16085–16096
  • Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R, et al. Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 1997; 16: 6131–6140
  • Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N, et al. Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science 1999; 286: 300–303
  • Thorley-Lawson D A. Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 2001; 1: 75–82
  • Miller C L, Burkhardt A L, Lee J H, Stealey B, Longnecker R, Bolen J B, et al. Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 1995; 2: 155–166
  • Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein–Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A 1984; 81: 3806–3810
  • Johannsen E, Koh E, Mosialos G, Tong X, Kieff E, Grossman S R. Epstein–Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J Virol 1995; 69: 253–262
  • Chen A, Zhao B, Kieff E, Aster J C, Wang F. EBNA-3B- and EBNA-3C-regulated cellular genes in Epstein–Barr virus-immortalized lymphoblastoid cell lines. J Virol 2006; 80: 10139–10150
  • Komano J, Maruo S, Kurozumi K, Oda T, Takada K. Oncogenic role of Epstein–Barr virus-encoded RNAs in Burkitt's lymphoma cell line Akata. J Virol 1999; 73: 9827–9831
  • Young L S, Dawson C W, Eliopoulos A G. Epstein–Barr virus and apoptosis: viral mimicry of cellular pathways. Biochem Soc Trans 1999; 27: 807–812
  • Armitage J M, Kormos R L, Stuart R S, Fricker F J, Griffith B P, Nalesnik M, et al. Post-transplant lymphoproliferative disease in thoracic organ transplant patients: ten years of cyclosporine-based immunosuppression. J Heart Lung Transplant 1991; 10: 877–886
  • Kuehnle I, Huls M H, Liu Z, Semmelmann M, Krance R A, Brenner M K, et al. CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 2000; 95: 1502–1505
  • Milpied N, Vasseur B, Parquet N, Garnier J L, Antoine C, Quartier P, et al. Humanized anti-CD20 monoclonal antibody (Rituximab) in post transplant B-lymphoproliferative disorder: a retrospective analysis on 32 patients. Ann Oncol 2000; 11(Suppl 1)113–116
  • Savoldo B, Rooney C M, Quiros-Tejeira R E, Caldwell Y, Wagner H J, Lee T, et al. Cellular immunity to Epstein–Barr virus in liver transplant recipients treated with rituximab for post-transplant lymphoproliferative disease. Am J Transplant 2005; 5: 566–572
  • Lee M Y, Chiou T J, Hsiao L T, Yang M H, Lin P C, Poh S B, et al. Rituximab therapy increased post-transplant cytomegalovirus complications in non-Hodgkin's lymphoma patients receiving autologous hematopoietic stem cell transplantation. Ann Hematol 2008; 87: 285–289
  • Little R F, Pittaluga S, Grant N, Steinberg S M, Kavlick M F, Mitsuya H, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood 2003; 101: 4653–4659
  • Orjuela M, Gross T G, Cheung Y K, Alobeid B, Morris E, Cairo M S. A pilot study of chemoimmunotherapy (cyclophosphamide, prednisone, and rituximab) in patients with post-transplant lymphoproliferative disorder following solid organ transplantation. Clin Cancer Res 2003; 9: 3945S–3952S
  • Heslop H E, Ng C Y, Li C, Smith C A, Loftin S K, Krance R A, et al. Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996; 2: 551–555
  • Rooney C M, Smith C A, Ng C Y, Loftin S K, Sixbey J W, Gan Y, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555
  • Khanna R, Bell S, Sherritt M, Galbraith A, Burrows S R, Rafter L, et al. Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 1999; 96: 10391–10396
  • Haque T, Wilkie G M, Taylor C, Amlot P L, Murad P, Iley A, et al. Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 2002; 360: 436–442
  • Savoldo B, Goss J A, Hammer M M, Zhang L, Lopez T, Gee A P, et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 2006; 108: 2942–2949
  • Introna M, Barbui A M, Golay J, Rambaldi A. Innovative cell-based therapies in onco-hematology: what are the clinical facts?. Haematologica 2004; 89: 1253–1260
  • Mentzer S J, Fingeroth J, Reilly J J, Perrine S P, Faller D V. Arginine butyrate-induced susceptibility to ganciclovir in an Epstein–Barr-virus-associated lymphoma. Blood Cells Mol Dis 1998; 24: 114–123
  • Perrine S P, Hermine O, Small T, Suarez F, O'Reilly R, Boulad F, et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein–Barr virus-associated lymphoid malignancies. Blood 2007; 109: 2571–2578
  • Paramore A, Frantz S. Bortezomib. Nat Rev Drug Discov 2003; 2: 611–612
  • Zou P, Kawada J, Pesnicak L, Cohen J I. Bortezomib induces apoptosis of Epstein–Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol 2007; 81: 10029–10036
  • Katano H, Pesnicak L, Cohen J I. Simvastatin induces apoptosis of Epstein–Barr virus (EBV)-transformed lymphoblastoid cell lines and delays development of EBV lymphomas. Proc Natl Acad Sci U S A 2004; 101: 4960–4965
  • Chodosh J, Holder V P, Gan Y J, Belgaumi A, Sample J, Sixbey J W. Eradication of latent Epstein–Barr virus by hydroxyurea alters the growth-transformed cell phenotype. J Infect Dis 1998; 177: 1194–1201
  • Slobod K S, Taylor G H, Sandlund J T, Furth P, Helton K J, Sixbey J W. Epstein–Barr virus-targeted therapy for AIDS-related primary lymphoma of the central nervous system. Lancet 2000; 356: 1493–1494
  • Gandhi M K, Tellam J T, Khanna R. Epstein–Barr virus-associated Hodgkin's lymphoma. Br J Haematol 2004; 125: 267–281
  • Lin J C, Jan J S, Hsu C Y, Liang W M, Jiang R S, Wang W Y. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol 2003; 21: 631–637
  • Bollard C M, Aguilar L, Straathof K C, Gahn B, Huls M H, Rousseau A, et al. Cytotoxic T lymphocyte therapy for Epstein–Barr virus + Hodgkin's disease. J Exp Med 2004; 200: 1623–1633
  • Bollard C M, Gottschalk S, Leen A M, Weiss H, Straathof K C, Carrum G, et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 2007; 110: 2838–2845
  • Bollard C M, Straathof K C, Huls M H, Leen A, Lacuesta K, Davis A, et al. The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin disease. J Immunother 2004; 27: 317–327
  • Leen A M, Myers G D, Sili U, Huls M H, Weiss H, Leung K S, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12: 1160–1166

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.