336
Views
27
CrossRef citations to date
0
Altmetric
Original Articles: Research

Homoharringtonine inhibits the AKT pathway and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells

, , , &
Pages 1954-1962 | Received 01 May 2008, Accepted 01 Jul 2008, Published online: 01 Jul 2009

References

  • Hideshima T, Anderson K C. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002; 2: 927–937
  • Cephalotaxus Research Coordinating Group. Cephalotaxine esters in the treatment of acute leukemia: a preliminary clinical assessment. Chin Med J 1976; 2: 263–272
  • Mai W Y, Lin M F. Induction of apoptosis by homoharringtonine in G1 phase huamn chronic myeloid leukemic cells. Chin Med J 2005; 118: 487–492
  • Jie H, Donghua H, Xingkui X, Liang G, Wenjun W, Xiaoyan H, et al. Homoharringtonine-induced apoptosis of MDS cell line MUTZ-1 cells is mediated by the endoplasmic reticulum stress pathway. Leuk Lymphoma 2007; 48: 964–977
  • Jin W, Di G, Li J, Chen Y, Li W, Wu J, et al. TIEG1 induces apoptosis through mitochondrial apoptotic pathway and promotes apoptosis induced by homoharringtonine and velcade. FEBS Lett 2007; 581: 3826–3832
  • Zhou J, Chen D, Shen Z, Koeffler H P. Effect of homoharringtonine on proliferation and differentiation of human leukemic cells in vitro. Cancer Res 1990; 50: 2031–2035
  • Cai Z, Lin M, Wuchter C, Ruppert V, Dorken B, Ludwiq W D, et al. Apoptotic response to homoharringtonine in human wt p53 leukemia cell is independent of reactive oxygen species generation and implication and implicates bax translocation. Leukemia 2001; 15: 567–574
  • Efferth T, Sauerbrey A, Halatsch M E, Ross D D. Gebhart E. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Naunyn Schmiedebergs Arch Pharmacol 2003; 367: 56–67
  • Legha S S, Keating M, Picket S, Ajani J A, Ewer M, Bodey G P. Phase I clinical investigation of homoharringtonine. Cancer Treat Rep 1984; 68: 1085–1091
  • Neidhart J A, Young D C, Kraut E, Howinstein B, Metz E N. Phase I trial of homoharringtonine administered by prolonged continuous infusion. Cancer Res 1986; 46: 967–969
  • Warrell R P, Jr, Coonley C J, Gee T S. Homoharringtonine: an effective new drug for remission induction in refractory non-lymphoblastic leukemia. J Clin Oncol 1985; 3: 617–621
  • Kantarjian H M, Keating M J, Walters R S, Koller C A, McCredie K B, Freireich E J. Phase II study of homoharringtonine in refractory acute myelogenous leukemia. Cancer 1989; 63: 813–817
  • Kantarjian H M, Talpaz M, Smith T L, Cortes J, Giles F J, Rios M B, et al. Homoharringtonine and low-dose cytarabine in the management of late chronic-phase chronic myelogenous leukemia. J Clin Oncol 2000; 18: 3513–3521
  • Jin J, Jiang D Z, Mai W Y, Meng H T, Qian W B, Tong H Y, et al. Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novo acute myeloid leukemia. Leukemia 2006; 20: 1361–1367
  • Yang X, Yang C, Shao K, Ye X, Meng H, Zhou Y, et al. Refractory multiple myeloma treated with homoharringtonine: report of two cases. Ann Hematol 2007; 86: 919–921
  • Lou Y J, Qian W B, Jin J. Homoharringtonine induces apoptosis and growth arrest in human myeloma cells. Leuk Lymphoma 2007; 48: 1400–1406
  • Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000; 60: 6763–6770
  • Hideshima T, Nakamura N, Chauhan D, Anderson K C. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20: 5991–6000
  • Mitsiades C S, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002; 21: 5673–5683
  • Meng H, Yang C, Ni W, Ding W, Yang X, Qian W. Antitumor activity of fludarabine against human multiple myeloma in vitro and in vivo. Eur J Hematol 2007; 79: 486–493
  • Qian W, Liu J, Jin J, Ni W, Xu W. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leukemia Res 2007; 31: 329–339
  • Guzman M L, Rossi R M, Karnischky L, Li X, Peterson D R, Howard D S, Jordan C T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005; 105: 4163–4169
  • LeBlanc R, Catley L P, Hideshima T, Lentzsch S, Mitsiades C S, Neuberg D, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62: 4996–5000
  • Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment?. Mol Cancer Ther 2003; 2: 573–580
  • David E, Sun S Y, Waller E K, Chen J, Khuri F R. Lonial S. The combination of the farnesyl transferase inhibitor lonafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 2005; 106: 4322–4329
  • Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I, et al. Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood 2004; 104: 1120–1126
  • Hideshima T, Bergsagel P L, Kuehl W M, Anderson K C. Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 603–618
  • Liang J, Slingerland J M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003; 2: 339–345
  • Chauhan D, Hideshima T, Rosen S, Reed J C, Kharbanda S, Anderson K C. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem 2001; 276: 24453–24456
  • Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed J C, et al. The AKT kinase is activated in multiple myeloma tunor cells. Blood 2001; 98: 2853–2855
  • Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006; 107: 4053–4062
  • Ghias K, Ma C, Gandhi V, Platanias L C, Krett N L, Rosen S T. 8-Amino-adenosine induces loss of phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Akt kinase: role in induction of apoptosis in multiple myeloma. Mol Cancer Ther 2005; 4: 569–577
  • Rizvi M A, Ghias K, Davies K M, Ma C, Weinberg F, Munshi H G, et al. Enzastaurin (LY317615), a protein kinase Cβ inhibitor, inhibits the AKT pathway and induces apoptosis in multiple myeloma cell lines. Mol Cancer Ther 2006; 5: 1783–1789
  • Chauhan D, Pandey P, Ogata A, Teoh G, Treon S, Urashima M, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene 1997; 15: 837–843
  • Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies F E, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000; 275: 27845–27850
  • Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann T A, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996; 87: 1104–1112
  • Romashkova J A, Makarov S S. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90
  • Dan H C, Sun M, Kaneko S, Feldman R I, Nicosia S V, Wang H G, et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 2004; 279: 5405–5412
  • Nakagawa Y, Abe S, Kurata M, Hasegawa M, Yamamoto K, Inoue M, et al. IAP family protein expression correlates with poor outcome of multiple myeloma patients in association with chemotherapy-induced overexpression of multidrug resistance genes. Am J Hematol 2006; 81: 824–831

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.