166
Views
12
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

Characterising the TP53-deleted subgroup of chronic lymphocytic leukemia: an analysis of additional cytogenetic abnormalities detected by interphase fluorescence in situ hybridisation and array-based comparative genomic hybridisation

, , , , , , , , , , , & show all
Pages 1879-1886 | Received 13 May 2008, Accepted 14 Jul 2008, Published online: 01 Jul 2009

References

  • Chiorazzi N, Rai K R, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815
  • Hamblin T J. Chronic lymphocytic leukaemia: clinical translations of biological features. Curr Top Microbiol Immunol 2005; 294: 165–185
  • Binet J L, Caligaris-Cappio F, Catovsky D, Cheson B, Davis T, Dighiero G, et al. Perspectives on the use of new diagnostic tools in the treatment of chronic lymphocytic leukemia. Blood 2006; 107: 859–861
  • Rai K R, Sawitsky A, Cronkite E P, Chanana A D, Levy R N, Pasternack B S. Clinical staging of chronic lymphocytic leukemia. Blood 1975; 46: 219–234
  • Binet J L, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981; 48: 198–206
  • Hamblin T J, Davis Z, Gardiner A, Oscier D G, Stevenson F K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854
  • Damle R N, Wasil T, Fais F, Ghiotto F, Valetto A, Allen S L, et al. IgV gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847
  • Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775
  • Hallek M, Wanders L, Ostwald M, Busch R, Senekowitsch R, Stern S, et al. Serum β(2)-microglobulin and serum thymidine kinase are independent predictors of progression-free survival in chronic lymphocytic leukemia and immunocytoma. Leuk Lymphoma 1996; 22: 439–447
  • Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916
  • Oscier D G, Wade R, Orchard J, Davis Z, Best G, Morilla A, et al. Prognostic factors in the UK LRF CLL4 trial (abstract). Blood 2006; 108: 299
  • Catovsky D, Richards S, Matutes E, Oscier D, Dyer M J, Bezares R F, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet 2007; 370: 230–239
  • Best O G, Gardiner A C, Davis Z A, Ibbotson R E, Majid A, Dyer M JS, et al. A subset of CLL patients with TP53 abnormalities and mutated VH genes have stable disease (abstract). Leuk Lymphoma 2007; 48(Suppl 1)S80–S81
  • Greshock J, Naylor T L, Margolin A, Diskin S, Cleaver S H, Futreal P A, et al. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res 2004; 14: 179–187
  • Albertson D G, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 2003; 12: R145–R152
  • Natrajan R, Little S E, Sodha N, Reis-Filho J S, Mackay A, Fenwick K, et al. Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms' tumour. J Pathol 2007; 211: 52–59
  • Vousden K H, Lane D P. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283
  • Bentz M, Huck K, du Manoir S, Joos S, Werner C A, Fischer K, et al. Comparative genomic hybridization in chronic B-cell leukemias shows a high incidence of chromosomal gains and losses. Blood 1995; 85: 3610–3618
  • Gonzalez D, Martinez P, Rudenko H, Brito V, Gonzalez M, Hernandez J M, et al. Molecular characterisation of TP53 abnormalities in CLL patients with 17p deletion (abstract). Leuk Lymph 2007; 48(suppl 1)S139
  • Stankiewicz P, Shaw C J, Dapper J D, Wakui K, Shaffer L G, Withers M, et al. Genome architecture catalyzes nonrecurrent chromosomal rearrangements. Am J Hum Genet 2003; 72: 1101–1116
  • Fink S R, Smoley S A, Stockero K J, Paternoster S F, Thorland E C, Van Dyke D L, et al. Loss of TP53 is due to rearrangements involving chromosome region 17p10 ∼ p12 in chronic lymphocytic leukemia. Cancer Genet Cytogenet 2006; 167: 177–181
  • Callet-Bauchu E, Salles G, Gazzo S, Poncet C, Morel D, Pagès J, et al. Translocations involving the short arm of chromosome 17 in chronic B-lymphoid disorders: frequent occurrence of dicentric rearrangements and possible association with adverse outcome. Leukemia 1999; 13: 460–468
  • Sankar M, Tanaka K, Kumaravel T S, Arif M, Shintani T, Yagi S, et al. Identification of a commonly deleted region at 17p13.3 in leukemia and lymphoma associated with 17p abnormality. Leukemia 1998; 12: 510–516
  • Hoff C, Seranski P, Mollenhauer J, Korn B, Detzel T, Reinhardt R, et al. Physical and transcriptional mapping of the 17p13.3 region that is frequently deleted in human cancer. Genomics 2000; 70: 26–33
  • Goh K O. Chromosomal abnormalities in chronic lymphocytic leukemia. Cancer Genet Cytogenet 1985; 16: 103–107
  • Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C, Martens U M, et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 2007; 109: 1202–1210
  • Fernàndez V, Jares P, Salaverria I, Giné E, Beà S, Aymerich M, et al. Gene expression profile and genomic changes in disease progression of early-stage chronic lymphocytic leukemia. Haematologica 2008; 93: 132–136
  • Tompkins V, Hagen J, Zediak V P, Quelle D E. Identification of novel ARF binding proteins by two-hybrid screening. Cell Cycle 2006; 5: 641–646
  • Lowe S W, Sherr C J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 2003; 13: 77–83
  • Eymin B, Leduc C, Coll J L, Brambilla E, Gazzeri S. p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene 2003; 22: 1822–1835
  • Perucca P, Cazzalini O, Mortusewicz O, Necchi D, Savio M, Nardo T, et al. Spatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen. J Cell Sci 2006; 119: 1517–1527
  • Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 2007; 21: 2442–2451
  • Lehmann S, Ogawa S, Raynaud S D, Sanada M, Nannya Y, Ticchioni M, et al. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer 2008 15; 112: 1296–1305
  • Satterwhite E, Sonoki T, Willis T G, Harder L, Nowak R, Arriola E L, et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 2001; 98: 3413–3420
  • Joos S, Menz C K, Wrobel G, Siebert R, Gesk S, Ohl S, et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 2002; 99: 1381–1387
  • Schwaenen C, Nessling M, Wessendorf S, Salvi T, Wrobel G, Radlwimmer B, et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 2004; 101: 1039–1044
  • Chevallier P, Penther D, Avet-Loiseau H, Robillard N, Ifrah N, Mahé B, et al. CD38 expression and secondary 17p deletion are important prognostic factors in chronic lymphocytic leukaemia. Br J Haematol 2002; 116: 142–150
  • Stilgenbauer S, Sander S, Bullinger L, Benner A, Leupolt E, Winkler D, et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007; 92: 1242–1245
  • Andritsos L A, Jones J, Lozanski G, Lin T S, Blum K A, Grever M R, et al. Del(17p13.1) in chronic lymphocytic leukemia confers poor prognosis even at low percentage involvement and increases proportionately with increase in clonal involvement (abstract). Blood 2007; 110: 2073
  • Zenz T, Häbe S, Denzel T, Winkler D, Döhner H, Stilgenbauer S. How little is too much? p53 inactivation: from laboratory cutoff to biological basis of chemotherapy resistance. Leukemia, [Epub ahead of print]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.