236
Views
33
CrossRef citations to date
0
Altmetric
Original Articles: Research

Case-only study of interactions between DNA repair genes (hMLH1, APEX1, MGMT, XRCC1 and XPD) and low-frequency electromagnetic fields in childhood acute leukemia

, , , , &
Pages 2344-2350 | Received 20 May 2008, Accepted 26 Aug 2008, Published online: 01 Jul 2009

References

  • Parkin D M, Stiller C A, Draper G J, Bieber C A. The international incidence of childhood cancer. Int J Cancer 1988; 42: 511–520
  • Sriamporn S, Vatanasapt V, Martin N, Sriplung H, Chindavijak K, Sontipong S, et al. Incidence of childhood cancer in Thailand 1988–1991. Paediatr Perinat Epidemiol 1996; 10: 73–85
  • Lightfoot T. Aetiology of childhood leukemia. Bioelectromagnetics 2005; 13(Suppl 7)S5–S11
  • Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 1979; 109: 273–284
  • Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer 2000; 83: 692–698
  • Greenland S, Sheppard A R, Kaune W T, Poole C, Kelsh M A. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology 2000; 11: 624–634
  • Mizoue T, Onoe Y, Moritake H, Okamura J, Sokejima S, Nitta H. Residential proximity to high-voltage power lines and risk of childhood hematological malignancies. J Epidemiol 2004; 14: 118–123
  • Draper G, Vincent T, Kroll M E, Swanson J. Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study. BMJ 2005; 330: 1290
  • Kabuto M, Nitta H, Yamamoto S, Yamaguchi N, Akiba S, Honda Y, et al. Childhood leukemia and magnetic fields in Japan: a case–control study of childhood leukemia and residential power-frequency magnetic fields in Japan. Int J Cancer 2006; 119: 643–650
  • Mejia-Arangure J M, Fajardo-Gutierrez A, Perez-Saldivar M L, Gorodezky C, Martinez-Avalos A, Romero-Guzman L, et al. Magnetic fields and acute leukemia in children with Down syndrome. Epidemiology 2007; 18: 158–161
  • Schuz J. Implications from epidemiologic studies on magnetic fields and the risk of childhood leukemia on protection guidelines. Health Phys 2007; 92: 642–648
  • O'Carroll M J, Henshaw D L. Aggregating disparate epidemiological evidence: comparing two seminal EMF reviews. Risk Anal 2008; 28: 225–234
  • Crumpton M J, Collins A R. Are environmental electromagnetic fields genotoxic?. DNA Repair (Amst) 2004; 3: 1385–1387
  • Ivancsits S, Diem E, Pilger A, Rudiger H W, Jahn O. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res 2002; 519: 1–13
  • Wolf F I, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D'Ascenzo M, et al. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 2005; 1743: 120–129
  • Tuimala J, Szekely G, Gundy S, Hirvonen A, Norppa H. Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: role in mutagen sensitivity. Carcinogenesis 2002; 23: 1003–1008
  • Kiuru A, Lindholm C, Heilimo I, Ceppi M, Koivistoinen A, Ilus T, et al. Influence of DNA repair gene polymorphisms on the yield of chromosomal aberrations. Environ Mol Mutagen 2005; 46: 198–205
  • Mathonnet G, Krajinovic M, Labuda D, Sinnett D. Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. Br J Haematol 2003; 123: 45–48
  • Krajinovic M, Labuda D, Mathonnet G, Labuda M, Moghrabi A, Champagne J, et al. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res 2002; 8: 802–810
  • Martin P, Santon A, Garcia-Cosio M, Bellas C. hMLH1 and MGMT inactivation as a mechanism of tumorigenesis in monoclonal gammopathies. Mod Pathol 2006; 19: 914–921
  • Huang M, Dinney C P, Lin X, Lin J, Grossman H B, Wu X. High-order interactions among genetic variants in DNA base excision repair pathway genes and smoking in bladder cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2007; 16: 84–91
  • Hill C E, Wickliffe J K, Wolfe K J, Kinslow C J, Lopez M S, Abdel-Rahman S Z. The L84F and the I143V polymorphisms in the O6-methylguanine-DNA-methyltransferase (MGMT) gene increase human sensitivity to the genotoxic effects of the tobacco-specific nitrosamine carcinogen NNK. Pharmacogenet Genomics 2005; 15: 571–578
  • Liang G, Xing D, Miao X, Tan W, Yu C, Lu W, et al. Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population. Int J Cancer 2003; 105: 669–673
  • Maslanyj M P, Mee T J, Renew D C, Simpson J, Ansell P, Allen S G, et al. Investigation of the sources of residential power frequency magnetic field exposure in the UK Childhood Cancer Study. J Radiol Prot 2007; 27: 41–58
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458
  • E Jaffe, Harris, N, Stein, H, Vardiman, J. World Health Organization Classification of Tumors: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, IARC Press. 2001
  • Ross M E, Mahfouz R, Onciu M, Liu H C, Zhou X, Song G, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687
  • Rodi C P, Darnhofer-Patel B, Stanssens P, Zabeau M, van den Boom D. A strategy for the rapid discovery of disease markers using the MassARRAY system. Biotechniques 2002; Suppl(62–6)68–69
  • Pachkowski B F, Winkel S, Kubota Y, Swenberg J A, Millikan R C, Nakamura J. XRCC1 genotype and breast cancer: functional studies and epidemiologic data show interactions between XRCC1 codon 280 His and smoking. Cancer Res 2006; 66: 2860–2868
  • Piegorsch W W, Weinberg C R, Taylor J A. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Stat Med 1994; 13: 153–162
  • Yang Q, Khoury M J, Sun F, Flanders W D. Case-only design to measure gene-gene interaction. Epidemiology 1999; 10: 167–170
  • Hamajima N, Yuasa H, Matsuo K, Kurobe Y. Detection of gene-environment interaction by case-only studies. Jpn J Clin Oncol 1999; 29: 490–493
  • Giarelli E, Jacobs L A. Modifying cancer risk factors: the gene-environment interaction. Semin Oncol Nurs 2005; 21: 271–277
  • Kotnis A, Sarin R, Mulherkar R. Genotype, phenotype and cancer: role of low penetrance genes and environment in tumour susceptibility. J Biosci 2005; 30: 93–102
  • Mucci L A, Wedren S, Tamimi R M, Trichopoulos D, Adami H O. The role of gene-environment interaction in the aetiology of human cancer: examples from cancers of the large bowel, lung and breast. J Intern Med 2001; 249: 477–493
  • Clavel J, Bellec S, Rebouissou S, Menegaux F, Feunteun J, Bonaiti-Pellie C, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev 2005; 14: 531–540
  • Infante-Rivard C, Mathonnet G, Sinnett D. Risk of childhood leukemia associated with diagnostic irradiation and polymorphisms in DNA repair genes. Environ Health Perspect 2000; 108: 495–498
  • Infante-Rivard C, Labuda D, Krajinovic M, Sinnett D. Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology 1999; 10: 481–487
  • Bolufer P, Barragan E, Collado M, Cervera J, Lopez J A, Sanz M A. Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 2006; 30: 1471–1491
  • Hakansson N, Gustavsson P, Sastre A, Floderus B. Occupational exposure to extremely low frequency magnetic fields and mortality from cardiovascular disease. Am J Epidemiol 2003; 158: 534–542
  • Zhu R, Lu F J, Zhang Z B, Zhai X W, Liu J, Lu G, et al. Association of genetic polymorphism of XRCC1 with susceptibility to acute childhood leukemia. Wei Sheng Yan Jiu 2005; 34: 300–302
  • Joseph T, Kusumakumary P, Chacko P, Abraham A, Pillai M R. DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett 2005; 217: 17–24
  • Pakakasama S, Sirirat T, Kanchanachumpol S, Udomsubpayakul U, Mahasirimongkol S, Kitpoka P, et al. Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2007; 48: 16–20
  • Nebert D W, McKinnon R A, Puga A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol 1996; 15: 273–280
  • Perera F P, Weinstein I B. Molecular epidemiology: recent advances and future directions. Carcinogenesis 2000; 21: 517–524
  • Albert P S, Ratnasinghe D, Tangrea J, Wacholder S. Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol 2001; 154: 687–693

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.