217
Views
11
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

Enumeration of blood dendritic cells in patients with multiple myeloma at presentation and through therapy

, &
Pages 2272-2283 | Received 01 Mar 2008, Accepted 08 Sep 2008, Published online: 01 Jul 2009

References

  • Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003; 121: 749–757
  • Child J A, Morgan G J, Davies F E, Owen R G, Bell S E, Hawkins K, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma [see comment]. N Engl J Med 2003; 348: 1875–1883
  • Attal M, Harousseau J L. Autologous peripheral blood progenitor cell transplantation for multiple myeloma. Baillieres Best Pract Res Clin Haematol 1999; 12: 171–191
  • Corradini P, Voena C, Tarella C, Astolfi M, Ladetto M, Palumbo A, et al. Molecular and clinical remission in multiple myeloma: role of autologous and allogeneic transplantation of haematopoietic cells. J Clin Oncol 1999; 17: 208–215
  • Bensinger W, Buckner C, Anasetti C, Clift R, Storb R, Barnett T, Chauncey T, et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood 1996; 88: 2787–2793
  • Verdonck L F, Petersen E J, Lokhorst H M, Nieuwenhuis H K, Dekker A W, Tilanus M G, et al. Donor leukocyte infusions for recurrent hematologic malignancies after allogeneic bone marrow transplantation: impact of infused and residual donor T cells. Bone Marrow Transplant 1998; 22: 1057–1063
  • Tricot G, Vesole D H, Jaganath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle. Blood 1996; 87: 1196–1199
  • Perez-Simon J A, Martino R, Alegre A, Tomas J F, De Leon A, Caballero D, et al. Chronic but not acute graft-versus-host disease improves outcome in multiple myeloma patients after non-myeloablative allogeneic transplantation. Br J Haematol 2003; 121: 104–108
  • Crawley C, Lalancette M, Szydlo R, Gilleece M, Peggs K, Mackinnon S, et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood 2005; 105: 4532–4539
  • Harrison S J, Cook G, Nibbs R J, Prince H M. Immunotherapy of multiple myeloma: the start of a long and tortuous journey. Expert Rev Anticancer Ther 2006; 6: 1769–1785
  • Cook G, Campbell J D. Immune regulation in multiple myeloma: the host-tumour conflict. Blood Rev 1999; 13: 151–162
  • Brown R, Murray A, Pope B, Sze D M, Gibson J, Ho P J, et al. Either interleukin-12 or interferon-gamma can correct the dendritic cell defect induced by transforming growth factor beta in patients with myeloma. Br J Haematol 2004; 125: 743–748
  • Villunger A, Egle A, Marschitz I, Kos M, Bock G, Ludwig H, et al. Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance. Blood 1997; 90: 12–20
  • Oyama T, Ran S, lshida T, Nadaf S, Kerr L, Carbone D P, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 1998; 160: 1224–1232
  • Treon S P, Maimonis P, Bua D, Young G, Raje N, Mollick J, et al. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood 2000; 96: 3147–3153
  • Agrawal B, Krantz M J, Reddish M A, Longenecker B M. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat Med 1998; 4: 43–49
  • Gimmi C D, Morrison B W, Mainprice B A, Gribben J G, Boussiotis V A, Freeman G J, et al. Breast cancer-associated antigen, DF3/MUC1, induces apoptosis of activated human T cells. Nat Med 1996; 2: 1367–1370
  • Austyn J M, Larsen C P. Migration patterns of dendritic leukocytes. Implications for transplantation. Transplantation 1990; 49: 1–7
  • Zuniga E I, McGavern D B, Pruneda-Paz J L, Teng C, Oldstone M B. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat Immunol 2004; 5: 1227–1234
  • Reid C D, Fryer P R, Clifford C, Kirk A, Tikerpae J, Knight S C. Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood. Blood 1990; 76: 1139–1149
  • Hock B D, Starling G C, Daniel P B, Hart D N. Characterization of CMRF-44, a novel monoclonal antibody to an activation antigen expressed by the allostimulatory cells within peripheral blood, including dendritic cells. Immunology 1994; 83: 573–581
  • Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 2002; 100: 230–237
  • Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165: 6037–6046
  • Brown R D, Pope B, Murray A, Esdale W, Sze D M, Gibson J, et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and interleukin-10. Blood 2001; 98: 2992–2998
  • Kovarova L, Buchler T, Pour L, Zahradova L, Ocadlikova D, Svobodnik A, et al. Dendritic cell counts and their subsets during treatment of multiple myeloma. Neoplasma 2007; 54: 297–303
  • McKenna K, Beignon A S, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 2005; 79: 17–27
  • Mason D, Simmons D, Buckley C, Schwartz-Albiez R, Hadam M, Saalmuller A, et al. Leukocyte typing VII. Oxford University Press, OxfordUK 2002
  • Glassman A B, Bennett C E. B and T lymphocytes: methodology and normal ranges. Ann Clin Lab Sci 1977; 7: 519–523
  • Reichert T, DeBruyere M, Deneys V, Totterman T, Lydyard P, Yuksel F, et al. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol 1991; 60: 190–208
  • Pilarski L M, Mant M J, Ruether B A, Belch A. Severe deficiency of B lymphocytes in peripheral blood from multiple myeloma patients. J Clin Invest 1984; 74: 1301–1306
  • Kay N E, Leong T, Kyle R A, Greipp P, Billadeau D, Van Ness B, et al. Circulating blood B cells in multiple myeloma: analysis and relationship to circulating clonal cells and clinical parameters in a cohort of patients entered on the Eastern Cooperative Oncology Group phase III E9486 clinical trial. Blood 1997; 90: 340–345
  • Rasmussen T, Jensen L, Johnsen H E. Levels of circulating CD19+ cells in patients with multiple myeloma. Blood 2000; 95: 4020–4021
  • Schutt P, Buttkereit U, Brandhorst D, Lindemann M, Schmiedl S, Grosse-Wilde H, et al. In vitro dendritic cell generation and lymphocyte subsets in myeloma patients: influence of thalidomide and high-dose chemotherapy treatment. Cancer Immunol Immunother 2005; 54: 506–512
  • Pilarski L M, Masellis-Smith A, Szczepek A, Mant M J, Belch A R. Circulating clonotypic B cells in the biology of multiple myeloma: speculations on the origin of myeloma. Leuk Lymphoma 1996; 22: 375–383
  • Gregersen H, Madsen K M, Sorensen H T, Schonheyder H C, lbsen J S, Dahlerup J F. The risk of bacteremia in patients with monoclonal gammopathy of undetermined significance. Eur J Haematol 1998; 61: 140–144
  • Zhang Z, Fu J, Zhao Q, He Y, Jin L, Zhang H, et al. Differential restoration of myeloid and plasmacytoid dendritic cells in HIV-1-infected children after treatment with highly active antiretroviral therapy. J Immunol 2006; 176: 5644–5651
  • Averill L, Lee W M, Karandikar N J. Differential dysfunction in dendritic cell subsets during chronic HCV infection. Clin Immunol 2007; 123: 40–49
  • Harrison S J, Stewart K, Holyoake T L, Franklin I M, Fraser A R. Kinetics of circulating monocytoid dendritic cells in patients with hematological malignancies after allogeneic or autologous stem cell transplant. Blood 2003; 102, Abstract #5338
  • Corral L G, Haslett P A, Muller G W, Chen R, Wong L M, Ocampo C J, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999; 163: 380–386
  • Schafer P H, Gandhi A K, Loveland M A, Chen R S, Man H W, Schnetkamp P P, et al. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther 2003; 305: 1222–1232
  • Davies F E, Raje N, Hideshima T, Lentzsch S, Young G, Tai Y T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98: 210–216
  • Reddy N, Cruz R, Hernandez-Ilizaliturri F, Knight J, Czuczman M S. Lenalidomide (Revlimid(R)) enhances monoclonal antibody-associated anti-tumor activity against rituximab-sensitive and rituximab-resistant B-cell lymphoma cell lines. ASH Annual Meeting Abstracts 2006; 108: 2522
  • Wu L, Schafer P, Muller G, Stirling D, Bartlett J B. Lenalidomide strongly enhances natural killer (nk) cell mediated antibody-dependent cellular cytotoxicity (adcc) of rituximab treated non-Hodgkin's lymphoma cell lines in vitro. ASH Annual Meeting Abstracts 2006; 108: 3714
  • Mohty M, Stoppa A M, Blaise D, Isnardon D, Gastaut J A, Olive D, et al. Differential regulation of dendritic cell function by the immunomodulatory drug thalidomide. J Leukoc Biol 2002; 72: 939–945
  • Subklewe M, Sebelin-Wulf K, Beier C, Lietz A, Mathas S, Dorken B, et al. Dendritic cell maturation stage determines susceptibility to the proteasome inhibitor bortezomib. Hum Immunol 2007; 68: 147–155
  • Straube C, Wehner R, Wendisch M, Bornhauser M, Bachmann M, Rieber E P, et al. Bortezomib significantly impairs the immunostimulatory capacity of human myeloid blood dendritic cells. Leukemia 2007; 21: 1464–1471
  • Kukreja A, Hutchinson A, Mazumder A, Vesole D, Angitapalli R, Jagannath S, et al. Bortezomib disrupts tumour-dendritic cell interactions in myeloma and lymphoma: therapeutic implications. Br J Haematol 2007; 136: 106–110
  • Brogdon J L, Xu Y, Szabo S J, An S, Buxton F, Cohen D, et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 2007; 109: 1123–1130
  • Nencioni A, Beck J, Werth D, Grunebach F, Patrone F, Ballestrero A, et al. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin Cancer Res 2007; 13: 3933–3941

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.