360
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Potential role of sorafenib in the treatment of acute myeloid leukemia

, , , , & , MD
Pages 2246-2255 | Received 23 Sep 2008, Accepted 26 Sep 2008, Published online: 01 Jul 2009

References

  • Jabbour E J, Estey E, Kantarjian H M. Adult acute myeloid leukemia. Mayo Clin Proc 2006; 81: 247–260
  • Llovet J M, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J F, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–390
  • Ricciardi M R, McQueen T, Chism D, Milella M, Estey E, Kaldjian E, et al. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19: 1543–1549
  • Ravandi F, Talpaz M, Estrov Z. Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin Cancer Res 2003; 9: 535–550
  • Doepfner K T, Boller D, Arcaro A. Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol 2007; 63: 215–230
  • Milella M, Kornblau S M, Estrov Z, Carter B Z, Lapillonne H, Harris D, et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859
  • Milella M, Estrov Z, Kornblau S M, Carter B Z, Konopleva M, Tari A, et al. Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 2002; 99: 3461–3464
  • Milella M, Konopleva M, Precupanu C M, Tabe Y, Ricciardi M R, Gregorj C, et al. MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood 2007; 109: 2121–2129
  • Kornblau S M, Womble M, Qiu Y H, Jackson C E, Chen W, Konopleva M, et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006; 108: 2358–2365
  • Gilliland D G, Griffin J D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542
  • Drexler H G. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996; 10: 588–599
  • Lyman S D. Biologic effects and potential clinical applications of FLT3 ligand. Curr Opin Hematol 1998; 5: 192–196
  • Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91: 459–463
  • Kelly L M, Yu J C, Boulton C L, Apatira M, Li J, Sullivan C M, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1: 421–432
  • Dosil M, Wang S, Lemischka I R. Mitogenic signalling and substrate specificity of the Flk2/FLT3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol 1993; 13: 6572–6585
  • Lisovsky M, Braun S E, Ge Y, Takahira H, Lu L, Savchenko V G, et al. FLT3-ligand production by human bone marrow stromal cells. Leukemia 1996; 10: 1012–1018
  • Lyman S D, Seaberg M, Hanna R, Zappone J, Brasel K, Abkowitz J L, et al. Plasma/serum levels of FLT3 ligand are low in normal individuals and highly elevated in patients with Fanconi anemia and acquired aplastic anemia. Blood 1995; 86: 4091–4096
  • Martelli A M, Tazzari P L, Evangelisti C, Chiarini F, Blalock W L, Billi A M, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 2007; 14: 2009–2023
  • Zeng Z, Sarbassov dos D, Samudio I J, Yee K W, Munsell M F, Ellen Jackson C, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007; 109: 3509–3512
  • Bromberg J F, Wrzeszczynska M H, Devgan G, Zhao Y, Pestell R G, Albanese C, et al. Stat3 as an oncogene. Cell 1999; 98: 295–303
  • Ning Z Q, Li J, Arceci R J. Signal transducer and activator of transcription 3 activation is required for Asp(816) mutant c-Kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood 2001; 97: 3559–3567
  • Nakao M, Janssen J W, Erz D, Seriu T, Bartram C R. Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia 2000; 14: 522–524
  • Carow C E, Kim E, Hawkins A L, Webb H D, Griffin C A, Jabs E W, et al. Localization of the human stem cell tyrosine kinase-1 gene (FLT3) to 13q12–>q13. Cytogenet Cell Genet 1995; 70: 255–257
  • Karsunky H, Merad M, Cozzio A, Weissman I L, Manz M G. FLT3 ligand regulates dendritic cell development from FLT3+ lymphoid and myeloid-committed progenitors to FLT3+ dendritic cells in vivo. J Exp Med 2003; 198: 305–313
  • Kusadasi N, Koevoet J L, van Soest P L, Ploemacher R E. Stromal support augments extended long-term ex vivo expansion of hemopoietic progenitor cells. Leukemia 2001; 15: 1347–1358
  • McKenna H J, Stocking K L, Miller R E, Brasel K, De Smedt T, Maraskovsky E, et al. Mice lacking FLT3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000; 95: 3489–3497
  • Mackarehtschian K, Hardin J D, Moore K A, Boast S, Goff S P, Lemischka I R. Targeted disruption of the flk2/FLT3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995; 3: 147–161
  • Zheng R, Friedman A D, Small D. Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dcl3 cells caused by expression of FLT3/ITD mutations. Blood 2002; 100: 4154–4161
  • Veiby O P, Jacobsen F W, Cui L, Lyman S D, Jacobsen S E. The FLT3 ligand promotes the survival of primitive hemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta. J Immunol 1996; 157: 2953–2960
  • Rosnet O, Buhring H J, Marchetto S, Rappold I, Lavagna C, Sainty D, et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996; 10: 238–248
  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335
  • Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169–178
  • Breitenbuecher F, Schnittger S, Grundler R, Markova B, Carius B, Brecht A, et al. Identification of a novel type of ITD mutations located in non-juxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood, in press
  • Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66
  • Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and MDS among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609
  • Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080
  • Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, et al. FLT3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914
  • Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K, et al. Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 2000; 108: 322–330
  • Tse K F, Mukherjee G, Small D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 2000; 14: 1766–1776
  • Radomska H S, Huettner C S, Zhang P, Cheng T, Scadden D T, Tenen D G. CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 1998; 18: 4301–4314
  • Ross S E, Radomska H S, Wu B, Zhang P, Winnay J N, Bajnok L, et al. Phosphorylation of C/EBP alpha inhibits granulopoiesis. Mol Cell Biol 2004; 24: 675–686
  • Wang X, Scott E, Sawyers C L, Friedman A D. C/EBP alpha bypasses granulocyte colony-stimulating factor signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts. Blood 1999; 94: 560–571
  • Pabst T, Mueller B U, Zhang P, Radomska H S, Narravula S, Schnittger S, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270
  • Wilhelm S, Chien D S. BAY 43-9006: preclinical data. Curr Pharm Des 2002; 8: 2255–2257
  • Wilhelm S M, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109
  • Druker B J. Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin Pharmacother 2003; 4: 963–971
  • Lyons J F, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8: 219–225
  • Kang B, Hao C, Wang H, Zhang J, Xing R, Shao J, et al. Evaluation of hepatic-metastasis risk of colorectal cancer upon the protein signature of PI3K/AKT pathway. J Proteome Res 2008; 7: 3507–3515
  • Steelman L S, Stadelman K M, Chappell W H, Horn S, Basecke J, Cervello M, et al. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12: 1139–1165
  • Sharma A, Trivedi N R, Zimmerman M A, Tuveson D A, Smith C D, Robertson G P. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 2005; 65: 2412–2421
  • Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006; 66: 11851–11858
  • Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith R A, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006; 5: 835–844
  • Cohen H T, McGovern F J. Renal-cell carcinoma. N Engl J Med 2005; 353: 2477–2490
  • Ratain M J, Eisen T, Stadler W M, Flaherty K T, Kaye S B, Rosner G L, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24: 2505–2512
  • Escudier B, Eisen T, Stadler W M, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356: 125–134
  • Zhang W, Konopleva M, Shi Y X, Harris D, Small D, Ling X, et al. Sorafenib (BAY 43-9006) directly targets FLT3-ITD in acute myelogenous leukemia. Blood 2006; 108
  • Auclair D, Miller D, Yatsula V, Pickett W, Carter C, Chang Y, et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 2007; 21: 439–445
  • Baines P, Fisher J, Truran L, Davies E, Hallett M, Hoy T, et al. The MEK inhibitor, PD98059, reduces survival but does not block acute myeloid leukemia blast maturation in vitro. Eur J Haematol 2000; 64: 211–218
  • James J A, Smith M A, Court E L, Yip C, Ching Y, Willson C, et al. An investigation of the effects of the MEK inhibitor U0126 on apoptosis in acute leukemia. Hematol J 2003; 4: 427–432
  • Zhang W, Konopleva M, Ruvolo V R, McQueen T, Evans R L, Bornmann W G, et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 2008; 22: 808–818
  • Adams J M. Ways of dying: multiple pathways to apoptosis. Genes Dev 2003; 17: 2481–2495
  • Bonni A, Brunet A, West A E, Datta S R, Takasu M A, Greenberg M E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999; 286: 1358–1362
  • Yu C, Bruzek L M, Meng X W, Gores G J, Carter C A, Kaufmann S H, et al. The role of MCL-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 2005; 24: 6861–6869
  • Zhang W, Konopleva M, Shi Y X, McQueen T, Harris D, Ling X, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008; 100: 184–198
  • Tong F K, Chow S, Hedley D. Pharmacodynamic monitoring of BAY 43-9006 (Sorafenib) in phase I clinical trials involving solid tumor and AML/MDS patients, using flow cytometry to monitor activation of the ERK pathway in peripheral blood cells. Cytometry B Clin Cytom 2006; 70: 107–114
  • Delmonte J. Update of a phase I study of Sorafenib in patients with refractory/relapsed acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 2007; 110
  • Safaian N N, Czibere A, Bruns I, Fenk R, Reinecke P, Dienst A, et al. Sorafenib (Nexavar((R))) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD(+) acute myeloid leukemia. Leuk Res, in press
  • Fried W, Chamberlin W, Kedo A, Barone J. Effects of radiation on hematopoietic stroma. Exp Hematol 1976; 4: 310–314
  • Domenech J, Roingeard F, Binet C. The mechanisms involved in the impairment of hematopoiesis after autologous bone marrow transplantation. Leuk Lymphoma 1997; 24: 239–256
  • Konopleva M, Konoplev S, Hu W, Zaritskey A Y, Afanasiev B V, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724
  • O'Farrell A M, Foran J M, Fiedler W, Serve H, Paquette R L, Cooper M A, et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 2003; 9: 5465–5476
  • Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann O G, O'Farrell A M, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105: 986–993
  • Jarvis W D, Fornari F A, Jr, Tombes R M, Erukulla R K, Bittman R, Schwartz G K, et al. Evidence for involvement of MAP kinase, rather than stress-activated protein kinase, in potentiation of 1-beta-D-arabinofuranosylcytosine-induced apoptosis by interruption of protein kinase C signaling. Mol Pharmacol 1998; 54: 844–856
  • Ravandi F, Estrov Z. Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin Cancer Res 2006; 12: 340–344
  • Li L, Piloto O, Kim K T, Ye Z, Nguyen H B, Yu X, et al. FLT3/ITD expression increases expansion, survival and entry into cell cycle of human haematopoietic stem/progenitor cells. Br J Haematol 2007; 137: 64–75
  • Clark J J, Cools J, Curley D P, Yu J C, Lokker N A, Giese N A, et al. Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood 2004; 104: 2867–2872
  • Cools J, Mentens N, Furet P, Fabbro D, Clark J J, Griffin J D, et al. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res 2004; 64: 6385–6349

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.