305
Views
49
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

Enhanced histone deacetylase enzyme activity in primary myelofibrosis

, , , , , , & show all
Pages 2321-2327 | Received 09 Sep 2008, Accepted 03 Oct 2008, Published online: 01 Jul 2009

References

  • Kralovics R, Passamonti F, Buser A S, Teo S S, Tiedt R, Passweg J R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790
  • Levine R L, Wadleigh M, Cools J, Ebert B L, Wernig G, Huntly B J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397
  • James C, Ugo V, Le Couédic J P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148
  • Pardanani A D, Levine R L, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476
  • Pikman Y, Lee B H, Mercher T, McDowell E, Ebert B L, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 18: e270
  • Kralovics R, Teo S S, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377–1380
  • Wang J C, Chen C, Lou L-H, Mora M. Blood thrombopoietin, IL-6 and IL-11 levels in patients with agnogenic myeloid metaplasia. Leukemia 1997; 11: 1827–1832
  • Wang J C, Novetsky A, Chen C, Wang W, Novetsky A D. Plasma matrix metalloproteinase and tissue inhibitor of metalloproteinase in patients with agnogenic myeloid metaplasia or idiopathic primary myelofibrosis. Br J Haematol 2002; 119: 709–712
  • Wang J C, Hemavathy K, Charles W, Zhang H, Dua P K, Novetsky A D, et al. Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Exp Hematol 2004; 32: 905–910
  • Hemavathy K C, Chang T H, Zhang H, et al. Reduced expression of TGF beta1RII in agnogenic myeloid metaplasia is not due to mutation or methylation. Leuk Res 2006; 30: 47–53
  • Zhao S, Venkatasubbarao K, Li S, Freeman J W. Requirement of a specific Sp1 site for histone deacetylase-mediated repression of transforming growth factor beta Type II receptor expression in human pancreatic cancer cells. Cancer Res 2003; 63: 2624–2630
  • Jenuwein T, Allis C D. Translating the histone code. Science 2001; 293: 1074–1080
  • Luger K, Mader A W, Richmond R K, Sargent D F, Richmond T J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389: 251–260
  • Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818
  • He L Z, Guidez F, Tribioli C, et al. Distinct interactions of PML-RARalpha and PLZFRARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 126–135
  • Wang J, Hoshino T, Redner R L, Kajigaya S, Liu J M. ETO, fusion partner in t(8;21) acutemyeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA 1998; 95: 10860–10865
  • Wang J, Saunthararajah Y, Redner R L, Liu J M. Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 1999; 59: 2766–2769
  • Dhordain P, Lin R J, Quief S, Lantoine D, Kerckaert J P, Evans R M, et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res 1998; 26: 4645–4651
  • Marks P, Rifkind R, Richon V, Breslow R, Miller T, Kelly W. Histone deacetylases and cancer: causes and therapies. Nature Rev 2001; 1: 194–202
  • Ammanamanchi S, Brattain M G. Restoration of transforming growth factor-signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells. J Biol Chem 2004; 279: 32620–32625
  • Dokmanovic M, Marks P A. Prospects: histone deacetylase inhibitors. J Cell Biochem 2005; 96: 293–304
  • Drummond D C, Noble C O, Kirpotin D B, Guo Z, Scott G K, Benz C C. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45: 495–528
  • Acharya M R, Sparreboom A, Venitz J, Figg W D. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 2005; 68: 917–932
  • Voelter-Mahlknecht S, Ho A D, Mahlknecht U. Chromosomal organization and localization of the novel class IV human histone deacetylase 11 ene. Int J Mol Med 2005; 16: 589–598
  • Ward H P, Block M H. The natural history of agnogenic myeloid metaplasia and a critical evaluation of its relationship with the myeloid proliferative disorders. Medicine 1971; 50: 357–420
  • Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med 2000; 342: 1255–1265
  • Michiels J J, Thiele J. Clinical and pathological criteria for the diagnosis of essential thrombocythemia, polycythemia vera, and idiopathic myelofibrosis (agnogenic myeloid metaplasia). Int J Hematol 2002; 76: 133–145
  • Berlin N I. Classification of the polycythemias and initial clinical features in polycythemia vera. Polycythemia Vera and the Myeloproliferative Disorders, L R Wasserman, P D Berk, N I Berlin. Saunders WB, Philadelphia 1995; 22–53
  • Iland H, Laszlo J, Murphy S. Essential thrombocythemia. Polycythemia Vera and the Myeloproliferative Disorders, L R Wasserman, P D Berk, N I Berlin. Saunders WB, Philadelphia 1995; 292–310
  • Baxter E J, Scott L M, Campbell P J, East C, Fourouclas N, Swanton S, et al. Cancer genome project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 366: 122
  • Amann J M, Nip J, Strom D K, et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 2001; 21: 6470–6483
  • Bradbury C A, Khanim F L, Hayden R, Bunce C M, White D A, Drayson M T, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 2005; 19: 1751–1759
  • Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer 2004; 112: 26–32
  • Zhu P, Martin E, Mengwasser J, Schlag P, Janssen K-P, Gottlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004; 5: 455–463
  • Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res Treat 2005; 94: 11–16
  • Zhang Z, Yamashita H, Toyama T, et al. HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 2004; 10: 6962–6968
  • Sakuma T, Uzawa K, Onda T, Shiiba M, Yokoe H, Shibahara T, et al. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int J Oncol 2006; 29: 117–124
  • Choi J H, Kwon H J, Yoon B I, Kim J H, Han S U, Joo H J, et al. Expression profile of histone deacetylase1 in gastric cancer tissues. Jpn J Cancer Res 2001; 92: 1300–1304
  • Barosi G, Bergamaschi G, Marchetti M, Vannucchi A M, Guglielmelli P, Antonioli E, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood 2007; 110: 4030–4036
  • Campbell P J, Green A R. The myeloproliferative disorders. N Engl J Med 2006; 355: 2452–2466
  • Glozak M A, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005; 363: 15–23
  • Glozak M A, Seto E. Histone deacetylases and cancer. Oncogene 2007; 26: 5420–5432
  • Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 2003; 22: 9176–9184
  • Vyas P, Ault K, Jackson C W, Orkin S H, Shivdasani R A. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 1999; 93: 2867–2875
  • Vannucchi A M, Bianchi L, Cellai C, Paoletti F, Rana R A, Lorenzini R, et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood 2002; 100: 1123–1132
  • Martyre M C, Steunou V, LeBousse-Kerdiles M C, Wietzerbin J, Vannucchi A M, Migliaccio A R. Lack of alterations in GATA-1 expression in CD34+ hematopoietic progenitors from patients with idiopathic myelofibrosis. Blood 2003; 101: 5087–5089
  • Jeong J W, Bae M K, Ahn M Y, Kim S H, Sohn T K, Bae M H, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002; 111: 709–720
  • Arora B, Mesa R, Tefferi A. Angiogenesis and anti-angiogenic therapy in myelofibrosis with myeloid metaplasia. Leuk Lymphoma 2004; 45: 2373–2386
  • Viatour P, Legrand-Poels S, van Lint C, Warnier M, Merville M P, Gielen J, et al. Cytoplasmic IkappaBalpha increases NF-kappaB-independent transcription through binding to histone deacetylase (HDAC) 1 and HDAC3. J Biol Chem 2003; 278: 46541–46548
  • Kiernan R, Bres V, Ng R W, Coudart M P, El Messaoudi S, Sardet C, et al. Post-activation turn-off of NF-kappaB-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003; 278: 2758–2766
  • Komura E, Tonetti C, Penard-Lacronique V, Chagraoui H, Lacout C, Lecouédic J P, et al. Role for the nuclear factor kappaB pathway in transforming growth factor-beta1 production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression. Cancer Res 2005; 65: 3281–3289
  • Marks P A, Richon V M, Miller T, Kelly W K. Histone deacetylase inhibitors. Adv Cancer Res 2004; 91: 137–168
  • Piekarz R L, Frye R, Turner M, et al. Phase II trial of Romidepsin, FK228, in cutaneous and peripheral T-cell lymphoma: clinical activity and molecular markers. Blood 2006; 108: 599a
  • Duvic M, Kim Y H, Kuzel T M, et al. Vorinostat (suberoylanilide hydroxamic acid, SAHA) provides prolonged clinical benefit to advanced cutaneous T-cell lymphoma patients: updated results of the Phase IIb multicenter clinical trial. [Abstract]. Blood 2006; 108: 122a
  • Inoue Y, Suzuki T, Takimoto M, Irei M, Yoshioka S, Shibuya Y, et al. Treatment with valproic acid for myelofibrosis with myeloid metaplasia. Ann Hematol 2005; 84: 833–834
  • Shi J, Zhao Y, Ishii T, Hu W, Sozer S, Zhang W, et al. Effects of chromatin-modifying agents on CD34+ cells from patients with idiopathic myelofibrosis. Cancer Res 2007; 67: 6417–6424

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.