107
Views
7
CrossRef citations to date
0
Altmetric
Original Articles: Research

Enhancement of lytic activity of leukemic cells by CD8+ cytotoxic T lymphocytes generated against a WT1 peptide analogue

, , , , , , , , , , & show all
Pages 260-269 | Received 19 Jul 2008, Accepted 22 Oct 2008, Published online: 01 Jul 2009

References

  • Dermime S, Armstrong A, Hawkins R E, Stern P L. Cancer vaccines and immunotherapy. Br Med Bull 2002; 62: 149–162
  • Dermime S, Gilham D E, Shaw D M, Davidson E J, Meziane el K, Armstrong A, et al. Vaccine and antibody-directed T cell tumour immunotherapy. Biochim Biophys Acta 2004; 1704: 11–35
  • Call K M, Glaser T, Ito C Y, Buckler A J, Pelletier J, Haber D A, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 1990; 60: 509–520
  • Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y, et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 1997; 89: 1405–1412
  • Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim E H, et al. Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 1999; 90: 194–204
  • Tamaki H, Ogawa H. Monitoring of minimal residual disease using WT1 assay for patients with chronic myeloid leukemia who undergo allogeneic stem cell transplantation. Bone Marrow Transplant 2004; 19: 19
  • Ogawa H, Ikegame K, Kawakami M, Tamaki H. WT1 gene transcript assay for relapse in acute leukemia after transplantation. Leuk Lymphoma 2004; 45: 1747–1753
  • Cilloni D, Saglio G. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematol 2004; 112: 79–84
  • Bader P, Niemeyer C, Weber G, Coliva T, Rossi V, Kreyenberg H, et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelo-monocytic leukemia?. Eur J Haematol 2004; 73: 25–28
  • Oka Y, Tsuboi A, Elisseeva O A, Udaka K, Sugiyama H. WT1 as a novel target antigen for cancer immunotherapy. Curr Cancer Drug Targets 2002; 2: 45–54
  • Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S, et al. Overexpression of the Wilms' tumor gene WT1 in de novo lung cancers. Int J Cancer 2002; 100: 297–303
  • Loeb D M, Evron E, Patel C B, Sharma P M, Niranjan B, Buluwela L, et al. Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 2001; 61: 921–925
  • Menssen H D, Renkl H J, Entezami M, Thiel E. Wilms' tumor gene expression in human CD34+ hematopoietic progenitors during fetal development and early clonogenic growth. Blood 1997; 89: 3486–3487
  • Ellisen L W, Carlesso N, Cheng T, Scadden D T, Haber D A. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J 2001; 20: 1897–1909
  • Wood P J, Socarras S, Streilein J W. Modification of the cytotoxic T cell repertoire in neonatal tolerance. Evidence for preferential survival of cells with low avidity for tolerogen. J Immunol 1987; 139: 3236–3244
  • Parkhurst M R, Salgaller M L, Southwood S, Robbins P F, Sette A, Rosenberg S A, et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 1996; 157: 2539–2548
  • Bakker A B, van der Burg S H, Huijbens R J, Drijfhout J W, Melief C J, Adema G J, et al. Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope. Int J Cancer 1997; 70: 302–309
  • Valmori D, Fonteneau J F, Lizana C M, Gervois N, Lienard D, Rimoldi D, et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 1998; 160: 1750–1758
  • Chen J L, Dunbar P R, Gileadi U, Jager E, Gnjatic S, Nagata Y, et al. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 2000; 165: 948–955
  • Tangri S, Ishioka G Y, Huang X, Sidney J, Southwood S, Fikes J, et al. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med 2001; 194: 833–846
  • Hoffmann T K, Loftus D J, Nakano K, Maeurer M J, Chikamatsu K, Appella E, et al. The ability of variant peptides to reverse the nonresponsiveness of T lymphocytes to the wild-type sequence p53(264–272) epitope. J Immunol 2002; 168: 1338–1347
  • Rosenberg S A, Yang J C, Schwartzentruber D J, Hwu P, Marincola F M, Topalian S L, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327
  • Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101: 13885–13890
  • Rezvani K, Grube M, Brenchley J M, Sconocchia G, Fujiwara H, Price D A, et al. Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 2003; 102: 2892–2900
  • Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S, et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100: 2132–2137
  • Tourdot S, Scardino A, Saloustrou E, Gross D A, Pascolo S, Cordopatis P, et al. A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol 2000; 30: 3411–3421
  • Oka Y, Elisseeva O A, Tsuboi A, Ogawa H, Tamaki H, Li H, et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms' tumor gene (WT1) product. Immunogenetics 2000; 51: 99–107
  • Sugden B, Mark W. Clonal transformation of adult human leukocytes by Epstein-Barr virus. J Virol 1977; 23: 503–508
  • Molldrem J, Dermime S, Parker K, Jiang Y Z, Mavroudis D, Hensel N, et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 1996; 88: 2450–2457
  • Zweerink H J, Gammon M C, Utz U, Sauma S Y, Harrer T, Hawkins J C, et al. Presentation of endogenous peptides to MHC class I-restricted cytotoxic T lymphocytes in transport deletion mutant T2 cells. J Immunol 1993; 150: 1763–1771
  • Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A, Shiku H, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 2004; 108: 704–711
  • Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J, et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 2002; 100: 3835–3837
  • Gao L, Bellantuono I, Elsasser A, Marley S B, Gordon M Y, Goldman J M, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203
  • Xue S A, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106: 3062–3067
  • Ellisen L W, Carlesso N, Cheng T, Scadden D T, Haber D A. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. Embo J 2001; 20: 1897–1909
  • Menssen H D, Renkl H J, Entezami M, Thiel E. Wilms' tumor gene expression in human CD34+ hematopoietic progenitors during fetal development and early clonogenic growth. Blood 1997; 89: 3486–3487
  • Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212: 8–27
  • Beyer M, Schultze J L. Regulatory T cells in cancer. Blood 2006; 108: 804–811
  • Clarke S L, Betts G J, Plant A, Wright K L, El-Shanawany T M, Harrop R, et al. CD4CD25FOXP3 Regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE 2006; 1: e129
  • Khazaie K, von Boehmer H. The impact of CD4+CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol 2006; 16: 124–136
  • Orentas R J, Kohler M E, Johnson B D. Suppression of anti-cancer immunity by regulatory T cells: back to the future. Semin Cancer Biol 2006; 16: 137–149
  • Dannull J, Su Z, Rizzieri D, Yang B K, Coleman D, Yancey D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115: 3623–3633
  • Asemissen A M, Keilholz U, Tenzer S, Muller M, Walter S, Stevanovic S, et al. Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res 2006; 12: 7476–7482
  • Yu Z, Theoret M R, Touloukian C E, Surman D R, Garman S C, Feigenbaum L, et al. Poor immunogenicity of a self/tumor antigen derives from peptide-MHC-I instability and is independent of tolerance. J Clin Invest 2004; 114: 551–559
  • Bakker A B, van der Burg S H, Huijbens R J, Drijfhout J W, Melief C J, Adema G J, et al. Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope. Int J Cancer 1997; 70: 302–309
  • Chen J-L, Dunbar P R, Gileadi U, Jager E, Gnjatic S, Nagata Y, et al. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 2000; 165: 948–955
  • Hoffmann T K, Loftus D J, Nakano K, Maeurer M J, Chikamatsu K, Appella E, et al. The ability of variant peptides to reverse the nonresponsiveness of T Lymphocytes to the wild-type sequence p53264-272 epitope. J Immunol 2002; 168: 1338–1347
  • Parkhurst M R, Salgaller M L, Southwood S, Robbins P F, Sette A, Rosenberg S A, et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 1996; 157: 2539–2548
  • Rosenberg S A, Yang J C, Schwartzentruber D J, Hwu P, Marincola F M, Topalian S L, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327
  • Tangri S, Ishioka G Y, Huang X, Sidney J, Southwood S, Fikes J, et al. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med 2001; 194: 833–846
  • Valmori D, Fonteneau J-F, Lizana C M, Gervois N, Lienard D, Rimoldi D, et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected melan-A/MART-1 immunodominant peptide analogues. J Immunol 1998; 160: 1750–1758
  • Pinilla-Ibarz J, May R J, Korontsvit T, Gomez M, Kappel B, Zakhaleva V, et al. Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia 2006; 20: 2025–2033
  • Tsuboi A, Oka Y, Udaka K, Murakami M, Masuda T, Nakano A, et al. Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol Immunother 2002; 51: 614–620

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.