329
Views
13
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma

, , , , &
Pages 236-246 | Received 30 Jun 2008, Accepted 17 Dec 2008, Published online: 01 Jul 2009

References

  • Bergsagel P L, Kuehl W M. Chromosome translocations in multiple myeloma. Oncogene 2001; 20: 5611–5622
  • Sahara N, Takeshita A, Shigeno K, Fujisawa S, Takeshita K, Naito K, et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol 2002; 117: 882–885
  • Hideshima T, Bergsagel P L, Kuehl W M, Anderson K C. Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 607–618
  • Mateo G, Montalbán M A, Vidriales M B, Lahuerta J J, Mateos M V, Gutiérrez N, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol 2008; 1(26)2737–2744
  • Ely S A, Knowles D M. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol 2002; 160: 1293–1299
  • Barker H F, Hamilton M S, Ball J, Drew M, Franklin I M. Expression of adhesion molecules LFA-3 and N-CAM on normal and malignant human plasma cells. Br J Haematol 1992; 81: 331–335
  • Drach J, Gattringer C, Huber H. Expression of the neural cell adhesion molecule (CD56) by human myeloma cells. Clin Exp Immunol 1991; 83: 418–422
  • Harada H, Kawano M M, Huang N, Harada Y, Iwato K, Tanabe O, et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993; 81: 2658–2663
  • Van Riet I, De Waele M, Remels L, Lacor P, Schots R, Van Camp B. Expression of cytoadhesion molecules (CD56, CD54, CD18 and CD29) by myeloma plasma cells. Br J Haematol 1991; 79: 421–427
  • Dahl I M, Rasmussen T, Kauric G, Husebekk A. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br J Haematol 2002; 116: 273–277
  • Pellat-Deceunynck C, Barillé S, Jego G, Puthier D, Robillard N, Pineau D, et al. The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia 1998; 12: 1977–1982
  • Rawstron A, Barrans S, Blythe D, Davies F, English A, Pratt G, et al. Distribution of myeloma plasma cells in peripheral blood and bone marrow correlates with CD56 expression. Br J Haematol 1999; 104: 138–143
  • Rawstron A C, Owen R G, Davies F E, Johnson R J, Jones R A, Richards S J, et al. Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage. Br J Haematol 1997; 97: 46–55
  • Chang H, Bartlett E S, Patterson B, Chen C I, Yi Q L. The absence of CD56 on malignant plasma cells in the cerebrospinal fluid is the hallmark of multiple myeloma involving central nervous system. Br J Haematol 2005; 129: 539–541
  • Sahara N, Takeshita A. Prognostic significance of surface markers expressed in multiple myeloma: CD56 and other antigens. Leuk Lymphoma 2004; 45: 61–65
  • Hundemer M, Klein U, Hose D, Raab M S, Cremer F W, Jauch A, et al. Lack of CD56 expression on myeloma cells is not a marker for poor prognosis in patients treated by high-dose chemotherapy and is associated with translocation t(11;14). Bone Marrow Transplant 2007; 40: 1033–1037
  • Nguyen C, Mattei M G, Mattei J F, Santoni M J, Goridis C, Jordan B R. Localization of the human NCAM gene to band q23 of chromosome 11: the third gene coding for a cell interaction molecule mapped to the distal portion of the long arm of chromosome 11. J Cell Biol 1986; 102: 711–715
  • Gattenloehner S, Chuvpilo S, Langebrake C, Reinhardt D, Müller-Hermelink H K, Serfling E, et al. Novel RUNX1 isoforms determine the fate of acute myeloid leukemia cells by controlling CD56 expression. Blood 2007; 110: 2027–2033
  • Agnelli L, Bicciato S, Mattioli M, Fabris S, Intini D, Verdelli D, et al. Molecular classification of multiple myeloma: a distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol 2005; 23: 7296–7306
  • Nutt S L, Heavey B, Rolink A G, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562
  • Lin P, Mahdavy M, Zhan F, Zhang H Z, Katz R L, Shaughnessy J D. Expression of PAX5 in CD20-positive multiple myeloma assessed by immunohistochemistry and oligonucleotide microarray. Mod Pathol 2004; 17: 1217–1222
  • Marango J, Shimoyama M, Nishio H, Meyer J A, Min D J, Sirulnik A, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 2008; 111: 3145–3154
  • Rasmussen T, Knudsen L M, Johnsen H E. Frequency and prognostic relevance of cyclin D1 dysregulation in multiple myeloma. Eur J Haematol 2001; 67: 296–301
  • Keats J J, Reiman T, Maxwell C A, Taylor B J, Larratt L M, Mant M J, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101: 1520–1529
  • Rasmussen T, Knudsen L M, Dahl I M, Johnsen H E. C-MAF oncogene dysregulation in multiple myeloma: frequency and biological relevance. Leuk Lymphoma 2003; 44: 1761–1766
  • Rasmussen T, Jensen L, Honore L, Andersen H, Johnsen H E. Circulating clonal cells in multiple myeloma do not express CD34 mRNA, as measured by single-cell and real-time RT-PCR assays. Br J Haematol 1999; 107: 818–824
  • Rasmussen T, Theilgaard-Monch K, Hudlebusch H R, Lodahl M, Johnsen H E, Dahl I M. Occurrence of dysregulated oncogenes in primary plasma cells representing consecutive stages of myeloma pathogenesis: indications for different disease entities. Br J Haematol 2003; 123: 253–262
  • Borson N D, Lacy M Q, Wettstein P J. Altered mRNA expression of Pax5 and Blimp-1 in B cells in multiple myeloma. Blood 2002; 100: 4629–4639
  • Holst B D, Wang Y, Jones F S, Edelman G M. A binding site for Pax proteins regulates expression of the gene for the neural cell adhesion molecule in the embryonic spinal cord. Proc Natl Acad Sci USA 1997; 94: 1465–1470
  • Wildonger J, Mann R S. The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development 2005; 132: 2263–2272
  • Lorsbach R B, Moore J, Ang S O, Sun W, Lenny N, Downing J R. Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 2004; 103: 2522–2529
  • Andersen M K, Christiansen D H, Pedersen-Bjergaard J. Amplification or duplication of chromosome band 21q22 with multiple copies of the AML1 gene and mutation of the TP53 gene in therapy-related MDS and AML. Leukemia 2005; 19: 197–200
  • Kozu T, Fukuyama T, Yamami T, Akagi K, Kaneko Y. MYND-less splice variants of AML1-MTG8 (RUNX1-CBFA2T1) are expressed in leukemia with t(8;21). Genes Chromosomes Cancer 2005; 43: 45–53
  • Bernardin F, Friedman A D. AML1 stimulates G1 to S progression via its transactivation domain. Oncogene 2002; 21: 3247–3252
  • Choi S J, Oba T, Callander N S, Jelinek D F, Roodman G D. AML-1A and AML-1B regulation of MIP-1alpha expression in multiple myeloma. Blood 2003; 101: 3778–3783
  • Chesi M, Nardini E, Lim R S, Smith K D, Kuehl W M, Bergsagel P L. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92: 3025–3034
  • Rasmussen T, Hudlebusch H R, Knudsen L M, Johnsen H E. FGFR3 dysregulation in multiple myeloma: frequency and prognostic relevance. Br J Haematol 2002; 117: 626–628
  • De Greef C, Van Riet I, Bakkus M H, Van Camp B. Differential gene expression of the neural cell adhesion molecule (N-CAM) in a panel of multiple myeloma cell lines. Leukemia 1998; 12: 86–93
  • Kraj M, Sokolowska U, Kopec-Szlezak J, Poglód R, Kruk B, Wozniak J, et al. Clinicopathological correlates of plasma cell CD56 (NCAM) expression in multiple myeloma. Leuk Lymphoma 2008; 49: 298–305
  • Ouyang W, Ma Q, Li J, Zhang D, Liu Z G, Rustgi A K, et al. Cyclin D1 induction through IκB kinase beta/nuclear factor-κB pathway is responsible for arsenite-induced increased cell cycle G1-S phase transition in human keratinocytes. Cancer Res 2005; 65: 9287–9293
  • Bergsagel P L, Kuehl W M, Zhan F, Sawyer J, Barlogie B, Shaughnessy J J. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303
  • Inaba T, Matsushime H, Valentine M, Roussel M F, Sherr C J, Look A T. Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics 1992; 13: 565–574
  • Soverini S, Cavo M, Cellini C, Terragna C, Zamagni E, Ruggeri D, et al. Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. Blood 2003; 102: 1588–1594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.