100
Views
11
CrossRef citations to date
0
Altmetric
Original Article: Research

Alterations in regulators of the extracellular matrix in non-Hodgkin lymphomas

, , , , , , & show all
Pages 998-1004 | Received 25 Nov 2008, Accepted 09 Mar 2009, Published online: 21 Jul 2009

References

  • Moehler T M, Ho A D, Goldschmidt H, Barlogie B. Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol 2003; 45: 227–244
  • Rundhaug J E. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005; 9: 267–285
  • Dean R A, Butler G S, Hamma-Kourbali Y, Delbe J, Brigstock D R, Courty J, et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and vegf/connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol 2007; 27: 8454–8465
  • Chirco R, Liu X W, Jung K K, Kim H R. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 2006; 25: 99–113
  • Sanderson R D, Lalor P, Bernfield M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul 1989; 1: 27–35
  • Sanderson R D, Borset M. Syndecan-1 in B lymphoid malignancies. Ann Hematol 2002; 81: 125–135
  • Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellén L, et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 2006; 10: 625–634
  • Filla M S, Dam P, Rapraeger A C. The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity. J Cell Physiol 1998; 174: 310–321
  • Bayer-Garner I B, Sanderson R D, Dhodapkar M V, Owens R B, Wilson C S. Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol 2001; 14: 1052–1058
  • Iino M, Foster D C, Kisiel W. Quantification and characterization of human endothelial cell-derived tissue factor pathway inhibitor-2. Arterioscler Thromb Vasc Biol 1998; 18: 40–46
  • Rao C N, Cook B, Liu Y, Chilukuri K, Stack M S, Foster D C, et al. HT-1080 fibrosarcoma cell matrix degradation and invasion are inhibited by the matrix-associated serine protease inhibitor TFPI-2/33 kDa MSPI. Int J Cancer 1998; 76: 749–756
  • Chand H S, Du X, Ma D, Inzunza H D, Kamei S, Foster D, et al. The effect of human tissue factor pathway inhibitor-2 on the growth and metastasis of fibrosarcoma tumors in athymic mice. Blood 2004; 103: 1069–1077
  • Ivanciu L, Gerard R D, Tang H, Lupu F, Lupu C. Adenovirus-mediated expression of tissue factor pathway inhibitor-2 inhibits endothelial cell migration and angiogenesis. Arterioscler Thromb Vasc Biol 2007; 27: 310–316
  • Hazar B, Polat G, Seyrek E, Bagdatoglglu O, Kanik A, Tiftik N. Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in Hodgkin's and non-Hodgkin's lymphoma. Int J Clin Pract 2004; 58: 139–143
  • Pennanen H, Kuittinen O, Turpeenniemi-Hujanen T. Plasma MMP-2-TIMP-2 complex levels measured during follow-up predict a risk of relapse in patients with malignant lymphoma. Eur J Haematol 2008; 80: 46–54
  • Negaard H FS, Iversen N, Bowitz-Lothe I M, Sandset P M, Steinsvik B, Østenstad B, et al. Increased bone marrow microvascular density in haematological malignancies is associated with differential regulation of angiogenic factors. Leukemia 2009; 23: 162–169
  • Constantinescu C S, Grygar C, Kappos L, Leppert D. Interleukin 15 stimulates production of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by human peripheral blood mononuclear cells. Cytokine 2001; 13: 244–247
  • Malik N, Greenfield B W, Wahl A F, Kiener P A. Activation of human monocytes through CD40 induces matrix metalloproteinases. J Immunol 1996; 156: 3952–3960
  • Negaard H FS, Iversen P O, Ostenstad B, Iversen N, Holme P A, Sandset P M. Hypercoagulability in patients with haematological neoplasia: no apparent initiation by tissue factor. Thromb Haemost 2008; 99: 1040–1048
  • WHO. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues3rd ed. IARC Press, Lyon 2001
  • Lister T A, Crowther D, Sutcliffe S B, Glatstein E, Canellos G P, Young R C, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's disease: Cotswolds meeting. J Clin Oncol 1989; 7: 1630–1636
  • Cheson B D, Horning S J, Coiffier B, Shipp M A, Fisher R I, Connors J M, et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 1999; 17: 1244–1253
  • Pavlaki M, Zucker S. Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev 2003; 22: 177–203
  • Zeng Z S, Guillem J G. Colocalisation of matrix metalloproteinase-9-mRNA and protein in human colorectal cancer stromal cells. Br J Cancer 1996; 74: 1161–1167
  • Wang H, Keiser J A. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 1998; 83: 832–840
  • McCawley L J, Matrisian L M. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 2000; 6: 149–156
  • Sternlicht M D, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463–516
  • Yoshiji H, Harris S R, Raso E, Gomez D E, Lindsay C K, Shibuya M, et al. Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int J Cancer 1998; 75: 81–87
  • Cornelius L A, Nehring L C, Harding E, Bolanowski M, Welgus H G, Kobayashi D K, et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 1998; 161: 6845–6852
  • Ferreras M, Felbor U, Lenhard T, Olsen B R, Delaissé J-M. Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 2000; 486: 247–251
  • Hamano Y, Zeisberg M, Sugimoto H, Lively J C, Maeshima Y, Yang C, et al. Physiological levels of tumstatin, a fragment of collagen IV [alpha]3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via [alpha]V[beta]3 integrin. Cancer Cell 2003; 3: 589–601
  • Klein G, Vellenga E, Fraaije M W, Kamps W A, de Bont E SJM. The possible role of matrix metalloproteinase (MMP)- 2 and MMP-9 in cancer, e.g., acute leukemia. Crit Rev Oncol Hematol 2004; 50: 87–100
  • Negaard H, Dahm A, Sandset P M, Iversen P O, Ostenstad B. Angiogenesis and hemostasis in hematological neoplasias. Curr Drug Targets 2005; 6: 683–699
  • Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 2002; 94: 883–893
  • Gerlach R F, Uzuelli J A, Souza-Tarla C D, Tanus-Santos J E. Effect of anticoagulants on the determination of plasma matrix metalloproteinase (MMP)- 2 and MMP-9 activities. Anal Biochem 2005; 344: 147–149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.