402
Views
1
CrossRef citations to date
0
Altmetric
Reports

Concepts in mature T-cell lymphomas – highlights from an international joint symposium on T-cell immunology and oncology*

, , , , , , , , , & show all
Pages 788-796 | Received 15 Jul 2016, Accepted 24 Jul 2016, Published online: 19 Sep 2016

References

  • Bellei M, Sabattini E, Pesce EA, et al. Pitfalls and major issues in the histologic diagnosis of peripheral T-cell lymphomas: results of the central review of 573 cases from the T-Cell Project, an international, cooperative study. Hematol Oncol. 2016. [Epub ahead of print]. doi: 10.1002/hon.2316.
  • Vose J, Armitage J, Weisenburger D, et al. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–4130.
  • Doring C, Hansmann ML, Agostinelli C, et al. A novel immunohistochemical classifier to distinguish Hodgkin lymphoma from ALK anaplastic large cell lymphoma. Mod Pathol. 2014;27:1345–1354.
  • Attygalle AD, Cabecadas J, Gaulard P, et al. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward - report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology. 2014;64:171–199.
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms. Blood. 2016;127:2375–2390.
  • Piccaluga PP, Fuligni F, De Leo A, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol. 2013;31:3019–3025.
  • Couronne L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366:95–96.
  • Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–175.
  • Quintanilla-Martinez L, Pittaluga S, Miething C, et al. NPM-ALK-dependent expression of the transcription factor CCAAT/enhancer binding protein beta in ALK-positive anaplastic large cell lymphoma. Blood. 2006;108:2029–2036.
  • Anastasov N, Bonzheim I, Rudelius M, et al. C/EBPβ expression in ALK-positive anaplastic large cell lymphomas is required for cell proliferation and is induced by the STAT3 signaling pathway. Haematologica. 2010;95:760–767.
  • Steinhilber J, Bonin M, Walter M, et al. Next-generation sequencing identifies deregulation of microRNAs involved in both innate and adaptive immune response in ALK + ALCL. PLoS One. 2015;10:e0117780.
  • Warner K, Weit N, Crispatzu G, et al. T-cell receptor signaling in peripheral T-cell lymphoma - a review of patterns of alterations in a central growth regulatory pathway. Curr Hematol Malig Rep. 2013;8:163–172.
  • Martins VC, Busch K, Juraeva D, et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature. 2014;509:465–470.
  • Britanova OV, Putintseva EV, Shugay M, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 2014;192:2689–2698.
  • Qi Q, Liu Y, Cheng Y, et al. Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA. 2014;111:3139–13144.
  • Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton (NJ): Princeton University Press; 2001.
  • Khailaie S, Robert PA, Toker A, et al. A signal integration model of thymic selection and natural regulatory T cell commitment. J Immunol. 2014;193:5983–5996.
  • Kalergis AM, Boucheron N, Doucey MA, et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat Immunol. 2001;2:229–234.
  • Diebner HH, Kirberg J, Roeder I. An evolutionary stability perspective on oncogenesis control in mature T-cell populations. J Theor Biol. 2016;389:88–100.
  • Herling M, Khoury JD, Washington LT, et al. A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood. 2004;104:328–335.
  • Herling M, Patel KA, Teitell MA, et al. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood. 2008;111:328–337.
  • Dondorf S, Schrader A, Herling M. Interleukin-2-inducible T-cell kinase (ITK) targeting by BMS-509744 does not affect cell viability in T-cell prolymphocytic leukemia (T-PLL). J Biol Chem. 2015;290:10568–10569.
  • Warner K, Crispatzu G, Al-Ghaili N, et al. Models for mature T-cell lymphomas-a critical appraisal of experimental systems and their contribution to current T-cell tumorigenic concepts . Crit Rev Oncol Hematol. 2013;88:680–695.
  • Zhang Q, Wei F, Wang HY, et al. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes. Am J Pathol. 2013;183:1971–1980.
  • Newrzela S, Al-Ghaili N, Heinrich T, et al. T-cell receptor diversity prevents T-cell lymphoma development. Leukemia. 2012;26:2499–2507.
  • Pechloff K, Holch J, Ferch U, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med. 2010;207:1031–1044.
  • Halle S, Keyser KA, Stahl FR, et al. In vivo killing capacity of cytotoxic T Cells is limited and involves dynamic interactions and T cell cooperativity. Immunity. 2016;44:233–245.
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–1517.
  • Grupp S, Maude S, Shaw P, et al. Durable remissions in children with relapsed/refractory all treated with t cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood. 2015;126:681.
  • Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.
  • Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–1295.
  • Ruella M, Barrett D, Kenderian S, et al. Combination of anti-CD123 and anti-CD19 chimeric antigen receptor T cells for the treatment and prevention of antigen-loss relapses occurring after CD19-targeted immunotherapies. Blood. 2015;126:2523.
  • Berdien B, Mock U, Atanackovic D, et al. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprograming of T lymphocytes by lentiviral gene transfer. Gene Ther. 2014;21:539–548.
  • Mock U, Hauber I, Fehse B. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nat Protoc. 2016;11:598–615.
  • Dearden C. How I treat prolymphocytic leukemia. Blood. 2012;120:538–551.
  • Hopfinger G, Busch R, Pflug N, et al. Sequential chemoimmunotherapy of fludarabine, mitoxantrone, and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T-cell prolymphocytic leukemia. Cancer. 2013;119:2258–2267.
  • Herling M. Are we improving the outcome for patients with T-cell prolymphocytic leukemia by allogeneic stem cell transplantation? Eur J Haematol. 2015;94:191–192.
  • Jerez A, Clemente MJ, Makishima H, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 2012;120:3048–3057.
  • Koskela HL, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366:1905–1913.
  • Kiel MJ, Velusamy T, Rolland D, et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood. 2014;124:1460–1472.
  • Loughran TP Jr, Zickl L, Olson TL, et al. Immunosuppressive therapy of LGL leukemia: prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998). Leukemia. 2015;29:886–894.
  • Schmitz N, Trumper L, Ziepert M, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2010;116:3418–3425.
  • d’Amore F, Gaulard P, Trumper L, et al. Peripheral T-cell lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v108–v115.
  • d’Amore F, Relander T, Lauritzsen GF, et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol. 2012;30:3093–3099.
  • Ellin F, Landstrom J, Jerkeman M, et al. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood. 2014;124:1570–1577.
  • Zelenetz AD, Gordon LI, Wierda WG, et al. NCCN Guidelines: non-Hodgkin’s lymphomas, Version 4.2014, 08/22/14 [Internet]. 2014, [cited 2016 Aug 15]. Available from: https://www.nccn.org/about/nhl.pdf.
  • Hapgood G, Savage KJ. X. Challenges and future directions in peripheral T-cell lymphoma. Hematol Oncol. 2015;33:56–61.
  • Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol 2013;31:1970–1976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.