5,416
Views
68
CrossRef citations to date
0
Altmetric
Reviews

Targeting histone deacetylases in T-cell lymphoma

&
Pages 1306-1319 | Received 24 Aug 2016, Accepted 06 Oct 2016, Published online: 04 Nov 2016

References

  • Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–1159.
  • Gronbaek K, Hother C, Jones PA. Epigenetic changes in cancer. Apmis. 2007;115:1039–1059.
  • New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol. 2012;6:637–656.
  • Beumer JH, Tawbi H. Role of histone deacetylases and their inhibitors in cancer biology and treatment. Curr Clin Pharmacol. 2010;5:196–208.
  • Thiagalingam S, Cheng KH, Lee HJ, et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci. 2003;983:84–100.
  • Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.
  • Marsoni S, Damia G, Camboni G. A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics. 2008;3:164–171.
  • Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol. 2012;90:85–94.
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–784.
  • Witt O, Deubzer HE, Milde T, et al. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277:8–21.
  • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.
  • Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010;6:238–243.
  • Lichtman MA, Beutler E, Kipps TJ, et al. Williams hematology. In: Anonymous. 7th ed. USA: McGraw-Hill Medical; 2006.
  • NCCN clinical practice guidelines in oncology: Non-hodgkin's lymphomas V.3.2016. National Comprehensive Cancer Network. https://www.nccn.org/store/login/login.aspx; https://www.nccn.org/professionals/physician_gls/pdf/nhl.pdf
  • Cancer facts & figures. Available from: http://www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-044552.pdf; 2015.
  • Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sézary syndrome: a proposal of the international society for cutaneous lymphomas (ISCL) and the cutaneous lymphoma task force of the European organization of research and treatment of cancer (EORTC). Blood. 2007;110:1713–1722.
  • Lansigan F, Choi J, Foss FM. Cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 2008;22:979–996.
  • Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised international society for cutaneous lymphomas/european organisation for research and treatment of cancer staging proposal. J Clin Oncol. 2010;28:4730–4739.
  • Talpur R, Singh L, Daulat S, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sézary syndrome from 1982 to 2009. Clin Cancer Res. 2012;18:5051–5060.
  • Alberti-Violetti S, Talpur R, Schlichte M, et al. Advanced-stage mycosis fungoides and Sézary syndrome: survival and response to treatment. Clin Lymphoma Myeloma Leuk. 2015;15:e105–e112.
  • Vose J, Armitage J, Weisenburger D. International T-ell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–4130.
  • Foss FM, Zinzani PL, Vose JM, et al. Peripheral T-cell lymphoma. Blood. 2011;117:6756–6767.
  • Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. In: Anonymous. 4th ed. Lyon, France: International Agency for Research on Cancer; 2008. p. 439.
  • Horwitz SM. Management of peripheral T-cell non-Hodgkin's lymphoma. Curr Opin Oncol. 2007;19:438–443.
  • Foss FM, Carson KR, Pinter-Brown L, et al. Comprehensive oncology measures for peripheral T-cell lymphoma treatment (COMPLETE): first detailed report of primary treatment. Blood. 2012;120:Abstract 1614.
  • Abouyabis AN, Shenoy PJ, Sinha R, et al. A systematic review and meta-analysis of front-line anthracycline-based chemotherapy regimens for peripheral T-cell lymphoma. ISRN Hematol. 2011;2011:623924.
  • Reimer P, Rudiger T, Geissinger E, et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol. 2009;27:106–113.
  • Moskowitz AJ, Lunning MA, Horwitz SM. How I treat the peripheral T-cell lymphomas. Blood. 2014;123:2636–2644.
  • O'Connor OA, Heaney ML, Schwartz L, et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol. 2006;24:166–173.
  • Piekarz RL, Robey R, Sandor V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood. 2001;98:2865–2868.
  • Marquard L, Poulsen CB, Gjerdrum LM, et al. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology 2009;54:688–698.
  • Valdez BC, Brammer JE, Li Y, et al. Romidepsin targets multiple survival signaling pathways in malignant T cells. Blood Cancer J. 2015;5:e357.
  • Piekarz RL, Robey RW, Zhan Z, et al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: Impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood. 2004;103:4636–4643.
  • Zhang C, Richon V, Ni X, et al. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: Relevance to mechanism of therapeutic action. J Investig Dermatol. 2005;125:1045–1052.
  • Conti C, Leo E, Eichler GS, et al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res. 2010;70:4470–4480.
  • Bates SE, Eisch R, Ling A, et al. Romidepsin in peripheral and cutaneous T-cell lymphoma: mechanistic implications from clinical and correlative data. Br J Haematol. 2015;170:96–109.
  • Ellis L, Pan Y, Smyth GK, et al. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res. 2008;14:4500–4510.
  • Istodax (romidepsin) [package insert] 2016. Available from: http://www.istodax.com/wp-content/uploads/ISTODAX_PackageInsert.pdf
  • Zolinza (vorinostat) [package insert] 2015. Available from: https://www.merck.com/product/usa/pi_circulars/z/zolinza/zolinza_pi.pdf
  • Beleodaq (belinostat) [package insert] 2014. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206256lbl.pdf
  • Whittaker SJ, Demierre M, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–4491.
  • Foss FM, Duvic M, Lerner A, et al. Responses to romidepsin in patients with cutaneous T-cell lymphoma (CTCL) with tumors and/or folliculotropic involvement. J Clin Oncol. 2014;32:Abstract 8575.
  • Duvic M, Kim YH, Rook AH, et al. Responses to romidepsin in patients with cutaneous T-cell lymphoma (CTCL) and prior treatment with systemic chemotherapy: subanalysis from the pivotal phase II study. T-Cell Lymphoma Forum. 2014; Abstract TS15_3.
  • Kim YH, Demierre MF, Kim EJ, et al. Clinically meaningful reduction in pruritus in patients with cutaneous T-cell lymphoma treated with romidepsin. Leuk Lymphoma. 2013;54:284–289.
  • Coiffier B, Pro B, Prince HM, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30:631–636.
  • Coiffier B, Pro B, Prince HM, et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol. 2014;7:11.
  • Pro B, Horwitz SM, Prince HM, et al. Romidepsin induces durable responses in patients with relapsed or refractory angioimmunoblastic T-cell lymphoma (AITL). Hematol Oncol. [Epub ahead of print]. doi: 10.1002/hon.2320.
  • Foss F, Horwitz S, Pro B, et al. Romidepsin for the treatment of relapsed/refractory peripheral T cell lymphoma: prolonged stable disease provides clinical benefits for patients in the pivotal trial. J Hematol Oncol. 2016;9:22.
  • Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–5417.
  • Piekarz RL, Frye R, Prince HM, et al. Phase II trial of romidepsin in patients with peripheral T-cell lymphoma. Blood. 2011;117:5827–5834.
  • Foss F, Coiffier B, Horwitz S, et al. Tolerability to romidepsin in patients with relapsed/refractory T-cell lymphoma. Biomark Res. 2014;2:16.
  • Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–39.
  • Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:3109–3115.
  • Duvic M, Kim YH, Kuzel TM, etet al. The systemic effects of vorinostat in patients (pts) with cutaneous T-cell lymphoma (CTCL): post-hoc analysis in pts with high blood tumor burden. Blood. 2009;114:Abstract 1709.
  • Foss F, Advani R, Duvic M, et al. A phase II trial of belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol. 2015;168:811–819.
  • O'Connor OA, Horwitz S, Masszi T, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33:2492–2499.
  • Savage KJ, Horwitz SM, Zinzani PL, etet al. Safe and effective treatment of patients with relapsed or refractory peripheral T-cell lymphoma (PTCL) and low baseline platelet counts with belinostat. Blood. 2014;124:Abstract 3075.
  • Shi Y, Dong M, Hong X, et al. Phase II study of chidamide (CS055), a new subtype-selective oral histone deacetylase inhibitor, in patients with relapesd or refractory peripheral T-cell lymphoma. J Clin Oncol. 2013;31(suppl.):Abstract 8525.
  • Shi Y, Dong M, Hong X, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26:1766–1771.
  • Shi Y, Dong M, Zhu J, et al. Phase II study of chidamide, a new subtype-selective oral histone deacetylase inhibitor, in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood. 2015;126:Abstract 1513.
  • Prince HM, George D, Patnaik A, et al. Phase I study of oral LBH589, a novel deacetylase (DAC) inhibitor in advanced solid tumors and non-Hodgkin's lymphoma. J Clin Oncol. 2007;25:3500.
  • Sharma S, Vogelzang NJ, Beck J, et al. Phase I pharmacokinetic and pharmacodynamic study of once-weekly i.v. panobinostat (LBH589). European Cancer Conference (ECCO 14) 2007;Poster presentation.
  • Duvic M, Dummer R, Becker JC, et al. Panobinostat activity in both bexarotene-exposed and -naive patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Cancer. 2013;49:386–394.
  • Kristeleit R, Fong P, Aherne GW, et al. Histone deacetylase inhibitors: emerging anticancer therapeutic agents? Clin Lung Cancer. 2005;7 Suppl 1:S19–S30.
  • Molife R, Fong P, Scurr M, et al. HDAC inhibitors and cardiac safety. Clin Cancer Res. 2007;13:1068.
  • de Bono JS, Kristeleit R, Tolcher A, et al. Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res. 2008;14:6663–6673.
  • Steele NL, Plumb JA, Vidal L, et al. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin Cancer Res. 2008;14:804–810.
  • Shah MH, Binkley P, Chan K, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12:3997–4003.
  • Stadler WM, Margolin K, Ferber S, et al. A phase II study of depsipeptide in refractory metastatic renal cell cancer. Clin Genitourin Cancer. 2006;5:57–60.
  • Kelly WK, O'Connor OA, Krug LM, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol. 2005;23:3923–3931.
  • FIscher T, Patnaik A, Bhalla K, etet al. Results of cardiac monitoring during phase I trials of a novel histone deacetylase (HDAC) inhibitor LBH589 in patients with advanced solid tumros and hematologic malignancies. J Clin Oncol. 2005;23:3106.
  • Piekarz RL, Frye AR, Wright JJ, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12:3762–3773.
  • Noonan AM, Eisch RA, Liewehr DJ, et al. Electrocardiographic studies of romidepsin demonstrate its safety and identify a potential role for KATP channel. Clin Cancer Res. 2013;19:3095–3104.
  • Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res. 2002;8:718–728.
  • Navari RM, Koeller JM. Electrocardiographic and cardiovascular effects of the 5-hydroxytryptamine3 receptor antagonists. Ann Pharmacother. 2003;37:1276–1286.
  • Keefe DL. The cardiotoxic potential of the 5-HT(3) receptor antagonist antiemetics: is there cause for concern? Oncologist. 2002;7:65–72.
  • Cabell C, Bates S, Piekarz R, et al. Systematic assessment of potential cardiac effects of the novel histone deacetylase (HDAC) inhibitor romidepsin. Blood. 2009;114:3709.
  • Dupuis J, Morschhauser F, Ghesquieres H, et al. Combination of romidepsin with cyclosphosphamide, doxorubicin, vinrcristine, and prednisone in previously untreated patients with peripheral T-cell lymphoma: A non-randomised, phase 1b/2 study. Lancet Hematol. 2015;2:e160–e165.
  • Delarue R, Zinzani PL, Hertzberg MS, et al. ROCHOP study: A phase III randomized study of CHOP compared to romidepsin-CHOP in untreated peripheral T-cell lymphoma. J Clin Oncol. 2013;31:Abstract TPS8616.
  • Oki Y, Younes A, Copeland A, et al. Phase I study of vorinostat in combination with standard CHOP in patients with newly diagnosed peripheral T-cell lymphoma. Br J Haematol. 2013;162:138–141.
  • Johnston PB, Cashen AF, Nikolinakos PG, et al. Safe and effective treatment of patients with peripheral T-cell lymphoma (PTCL) with the novel HDAC inhibitor, belinostat, in combination with CHOP: results of the bel-CHOP phase 1 trial. Blood. 2015;126:Abstract 253.
  • Chihara D, Oki Y, Westin JR, et al. High response rate of romidepsin in combination with ICE (ifosfamide, carboplatin and etoposide) in patients with relapsed or refractory peripheral T-cell lymphoma: updates of phase I trial. Blood. 2015;126:Abstract 3987.
  • Budde LE, Zhang MM, Shustov AR, et al. A phase I study of pulse high-dose vorinostat (V) plus rituximab (R), ifosphamide, carboplatin, and etoposide (ICE) in patients with relapsed lymphoma. Br J Haematol. 2013;161:183–191.
  • Targretin (bexarotene) [package insert] 2013.
  • Dummer R, Beyer M, Hymes K, et al. Vorinostat combined with bexarotene for treatment of cutaneous T-cell lymphoma: in vitro and phase I clinical evidence supporting augmentation of retinoic acid receptor/retinoid X receptor activation by histone deacetylase inhibition. Leuk Lymphoma. 2012;53:1501–1508.
  • Revlimid (lenalidomide) [package insert] 2015. Available from: http://www.revlimid.com/wp-content/uploads/full-prescribing-information.pdf
  • Witzig TE, Vose JM, Moore TD, et al. Results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory indolent non-Hodgkin's lymphoma. Blood. 2007;110:Abstract 2560.
  • Witzig TE, Wiernik PH, Moore T, et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin's lymphoma. J Clin Oncol. 2009;27:5404–5409.
  • Wiernik PH, Lossos IS, Tuscano JM, et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma. J Clin Oncol. 2008;26:4952–4957.
  • Cosenza M, Civallero M, Fiorcari S, et al. Romidepsin synergizes with lenalidomide in T cell lymphoma cell lines by increasing reactive oxygen species and modulating PI3K/AKT and MAPK/ERK signaling pathways. Blood. 2014;124:Abstract 1778.
  • Cosenza M, Civallero M, Fiorcari S, et al. Romidepsin and lenalidomide show a synergistic effect in T-cell lymphoma cell lines. Blood. 2013;122:Abstract 5148.
  • Lunning MA, Ruan J, Nair S, et al. A phase I/II trial of the combination of romidepsin and lenalidomide in patients with relaped/refractory lymphoma and myeloma: phase 1 results. J Clin Oncol. 2014;32:Abstract 8582.
  • Mehta-Shah N, Lunning MA, Ruan J, et al. A phase I/II trial of the combination of romidepsin and lenalidomide in patients with relapsed/refractory lymphoma and myeloma. Hematol Oncol. 2015;33:Abstract 016.
  • Hopfinger G, Nosslinger T, Lang A, et al. Lenalidomide in combination with vorinostat and dexamethasone for the treatment of relapsed/refractory peripheral T cell lymphoma (PTCL): report of a phase I/II trial. Ann Hematol. 2014;93:459–462.
  • Friedberg J, Mahadevan D, Jung J, et al. Phase 2 trial of alisertib (MLN8237), an investigational, potent inhibitor of aurora A kinase (AAK), in patients (pts) with aggressive B- and T-cell non-Hodgkin lymphoma (NHL). ASH Annual Meeting Abstracts 2011;118:Abstract 95.
  • Barr PM, Li H, Spier CM, et al. U.S. intergroup phase II trial (SWOG 1108) of alisertib, an investigational aurora A kinase (AAK) inhibitor, in patients with peripheral T-cell lymphoma (PTCL; NCT01466881). J Clin Oncol. 2014;32(15_suppl.):Abstract 8523.
  • Zullo K, Guo Y, Cooke L, et al. The investigational aurora A kinase inhibitor alisertib exhibits broad activity in preclinical models of T-cell lymphoma and is highly synergistic with romidepsin. Blood. 2014;124:Abstract 4493.
  • Fanale MA, Hagemeister FB, Fayad L, et al. A phase I trial of alisertib plus romidepsin for relapsed/refractory aggressive B- and T-cell lymphomas. Blood. 2014;124:Abstract 1744.
  • Yee KW, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12:5165–5173.
  • Witzig TE, Reeder CB, LaPlant BR, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 2011;25:341–347.
  • Oki Y, Buglio D, Fanale M, et al. Phase I study of panobinostat plus everolimus in patients with relapsed or refractory lymphoma. Clin Cancer Res. 2013;19:6882–6890.
  • Zinzani PL, Musuraca G, Tani M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:4293–4297.
  • Catley L, Weisberg E, Kiziltepe T, et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006;108:3441–3449.
  • Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res. 2004;10:3839–3852.
  • Sutheesophon K, Kobayashi Y, Takatoku MA, et al. Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of bax, which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol. 2006;115:78–90.
  • Kikuchi J, Wada T, Shimizu R, et al. Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood. 2010;116:406–417.
  • Heider U, Rademacher J, Lamottke B, et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T cell lymphoma. Eur J Haematol. 2009;82:440–449.
  • Farydak (panobinostat) [package insert] 2016. Available from: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/farydak.pdf
  • Goh Y, Hwang WYK, Diong CP, et al. A phase 2 study of panobinostat (PAN) in combination with bortezomib (BTZ) in patients with relapsed/refractory peripheral T-cell lymphoma (PTCL) or NK/T-cell lymphoma (NKL). Blood. 2014;124:Abstract 503.
  • Dedes KJ, Dedes I, Imesch P, et al. Acquired vorinostat resistance shows partial cross-resistance to ‘second-generation’ HDAC inhibitors and correlates with loss of histone acetylation and apoptosis but not with altered HDAC and HAT activities. Anticancer Drugs. 2009;20:321–333.
  • Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002;62:4916–4921.
  • Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI sponsored international working group. J Clin Oncol. 1999;17:1244.
  • Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–586.
  • Horwitz S, O'Connor O, Jurczak W, et al. Belinostat in relapsed or refractory peripheral T-cell lymphoma (R/R PTCL) subtype angioimmunoblastic T-cell lymphoma (AITL): results from the pivotal BELIEF trial. 12th International Conference on Malignant Lymphoma; 2013.