503
Views
5
CrossRef citations to date
0
Altmetric
Original Articles: Research

Gene expression analysis of hypersensitivity to mosquito bite, chronic active EBV infection and NK/T-lymphoma/leukemia

, , , , , , , , , , , , , & show all
Pages 2683-2694 | Received 05 Jun 2016, Accepted 06 Mar 2017, Published online: 03 Apr 2017

References

  • Oshima K, Kimura H, Yoshino T, et al. Review article proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV-LPD. Pathol Int. 2008;58:209–217.
  • Park S, Ko YH. Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disorders. J Dermatol. 2014;41:29–39.
  • Ohga S, Ishimura M, Yoshimoto G, et al. Clonal origin of Epstein-Barr virus (EBV)-infected T/NK-cell subpopulations in EBV-positive T/NK-cell lymphoproliferative disorders of childhood. J Clin Virol. 2011;51:31–37.
  • Lee WI, Lin JJ, Hsieh MY, et al. Immunologic difference between hypersensitivity to mosquito bite and hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus infection. PLoS One. 2013;8:e76711.
  • Asada H. Hypersensitivity to mosquito bites: a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. J Dermatol Sci. 2007;45:153–160.
  • Kimura H. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol. 2006;16:251–261.
  • Lee WI, Lin JJ, Hsieh MY, et al. Immunologic difference between hypersensitivity to mosquito bite and hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus infection. PLoS One. 2013;8:e76711.
  • Takahashi E, Ohshima K, Kimura H, NK-cell Tumor Study Group, et al. Clinicopathological analysis of the age-related differences in patients with Epstein-Barr virus (EBV)-associated extranasal natural killer (NK)/T-cell lymphoma with reference to the relationship with aggressive NK cell leukaemia and chronic active EBV infection-associated lymphoproliferative disorders. Histopathology. 2011;59:660–671.
  • Nitta Y, Iwatsuki K, Kimura H, et al. Fatal natural killer cell lymphoma arising in a patient with a corp of Epstein-Barr virus-associated disorders. Eur J Dermatol. 2005;153:981–986.
  • Picard C, Gouarin S, Comoz F, et al. Chronic active Epstein-Barr virus infection with cutaneous and sinus lymphoproliferation in a white female patient with 25 years' follow-up: an original case report. Br J Dermatol. 2015;173:1266–1270.
  • Fujiwara S, Kimura H, Imadome K, et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int. 2014;56:159–166.
  • Ishihara S, Okada S, Wakiguchi H, et al. Clonal lymphoproliferation following chronic active Epstein-Barr virus infection and hypersensitivity to mosquito bites. Am J Hematol. 1997;54:276–281.
  • Kimura H, Ito Y, Kawabe S, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119:673–686.
  • Suzuki R. Treatment of advanced extranodal NK/T cell lymphoma, nasal type and aggressive NK-cell leukemia. Int J Hematol. 2010;92:697–701.
  • Caligiuri MA. Human natural killer cells. Blood. 2008;112:461–469.
  • Poli A, Michel T, Thérésine M, et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126:458–465.
  • Yoshihito K, Akihiro Y. Cell type specific infection of Epstein/Barr virus (EBV) in EBVassociated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Crit Rev Oncol/Hematol. 2002;44:283–294.
  • Zhang Y, Ohyashiki JH, Takaku T, et al. Transcriptional profiling of Epstein-Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection. Br J Cancer. 2006;94:599–608.
  • Ito Y, Shibata-Watanabe Y, Ushijima Y, et al. Oligonucleotide microarray analysis of gene expression profiles followed by real-time reverse-transcriptase polymerase chain reaction assay in chronic active Epstein-Barr virus infection. J Infect Dis. 2008;197:663–666.
  • Murakami M, Hashida Y, Imajoh M, et al. PCR array analysis of gene expression profiles in chronic active Epstein-Barr virus infection. Microbes Infect. 2014;16:581–586.
  • Kawano Y, Iwata S, Kawada J, et al. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. J Infect Dis. 2013;208:771–779.
  • Tsuge I, Morisima T, Morita M, et al. Characterization of Epstein-Barr virus (EBV)-infected natural killer (NK) cell proliferation in patients with severe mosquito allergy; establishment of an IL-2-dependennt NK-like cell line. Clin Exp Immunol. 1999;115:385–392.
  • Zhang Y, Nagata H, Ikeuchi T, et al. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniform-like eruptions. Br J Haematol. 2003;121:805–814.
  • Tsuchiyama J, Yoshino T, Mori M, et al. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with epstein-barr virus infection. Blood. 1998;92:1374–1383.
  • Kagami Y, Nakamura S, Suzuki R, et al. Establishment of an IL-2-dependent cell line derived from 'nasal-type' NK/T-cell lymphoma of CD2+, sCD3−, CD3epsilon+, CD56+ phenotype and associated with the Epstein-Barr virus. Br J Haematol. 1998;103:669–677.
  • Tsuge M, Oka T, Yamashita N, et al. Gene expression analysis in children with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. J Neurovirol. 2014;20:73–84.
  • Abd Al Kader L, Oka T, Takata K, et al. In aggressive variants of non-Hodgkin lymphomas, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4 dominates over PRC1.2. Virchows Arch. 2013;463:697–711.
  • Oka T, Ouchida M, Koyama M, et al. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res. 2002;62:6390–6394.
  • Deitch AD, Law H, deVere White RA. A stable propidium iodide staining procedure for flow cytometry. J Histochem Cytochem. 1982;30:967–972.
  • Xu D, Qu CK. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci. 2008;13:4925–4932.
  • Han Y, Amin HM, Franko B, et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK + anaplastic large-cell lymphoma. Blood. 2006;108:2796–2803.
  • Oka T, Yoshino T, Hayashi K, et al. Reduction of hematopoietic cell-specific tyroshine phosphatase SHP-1 gene expression in natural killer cell lymphoma and various types of lymphomas/leukemias: combination analysis with cDNA expression array and tissue microarray. American J Pathol. 2001;159:1495–1505.
  • Oka T, Yoshino T, Hayashi K, et al. Abnormal expression of protein-tyrosine phosphatase SHP1 gene in malignant lymphomas and leukemias. Jpn J Cancer Clin. 2002;48:561–568.
  • Koyama M, Oka T, Ouchida M, et al. Activated proliferation of B-cell lymphomas/leukemias with the SHP1 gene silencing by aberrant CpG methylation. Lab Invest. 2003;83:1849–1858.
  • Oka T, Ouchida M, Tanimoto M, et al. High frequent gene silencing of hematopoietic cell specific protein tyrosine phosphatase SHP1 in hematopoietic cell malignancies. In: Gene silencing: New research. G.W. Redberry, editor. New York: Nova Science Publishers Inc.; 2006. p. 1–34.
  • Kang X, Kim J, Deng M, et al. Inhibitory leukocyte immunoglobulin-like receptors: immune checkpoint proteins and tumor sustaining factors. Cell Cycle. 2016;15:25–40.
  • Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29:465–468.
  • Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–150.
  • (a) Xu D, Qu CK. Protein tyrosine phosphatase in the JAK/STAT pathway. NIH Public Access. 2008;13:4925–4932.(b) Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833–846.
  • Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 2005;96:835–843.
  • Neel BG, Gu H, Pao L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284–293.
  • Saju P, Murata-Kamiya N, Hayashi T, et al. Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat Microbiol. 2016;1:16026.
  • Ito T, Kawazu H, Murata T, et al. Role of latent membrane protein 1 in chronic active Epstein-Barr virus infection-derived T/NK-cell proliferation. Cancer Med. 2014;3:787–795.
  • Yamauchi Y, Tachiband Y, Maeda A, et al. Evaluation of antibodies to the Epstein-Barr virus immediate early gene product ZEBRA by a new enzyme-linked immunosorbent assay. Intervirology. 1998;41:278–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.